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ABSTRACT OF THE DISSERTATION

Cryptography has always been the science of Secure Communication. The past decade has
been epitomized by the emergence of Blockchain Technology, without leaving Cryptography
unaffected. The manifesto of Blockchains is Decentralization, making it inevitable that the
information is stored and veri�ed in real-time by thousands of participants. This spotlighted two
necessities: information should be as concise as possible and veri�cation of processes should be
fast.
From a cryptographic perspective, this translates to a central desideratum: Succinctness.

A cryptographic construction is called Succinct if its algorithm is generating outputs that are
(exponentially) smaller than the inputs. This allows the cryptosystem to treat large data and
produce concise outputs that, nevertheless, preserve the desired functionality of the system.
In this thesis, we are concerned with a speci�c type of Succinct cryptographic primitives:

Succinct Commitments. Cryptographic commitments are objects that allow one to commit to
some data, providing a binding representative. Then at any later point they can open back the
(committed) data providing an opening proof, but without being able to open differently the
representative. In more detail, in our work we deal with commitments with more �ne-grained
openings, where one can generate an opening proof of the commitment to a function f(m) of
the initial datam.

Firstly, we deal with set commitments with private (non-)memberhsip openings. We construct
succinct zero-knowledge proofs for the problem of set (non-)membership. Intuitively, a zero-
knowledge proof is a cryptographic primitive that allows one to prove a statement, in a sound
way, without leaking any other information except for the fact that the statement holds. In a
zero-knowledge proof for set membership �rst one commits to a public set and then a party can
prove membership to the set but without betraying which element of the set exactly is. Such
(set) commitments with this type of �ne-grained openings are the cornerstone of Anonymous
Cryptocurrencies such as Zcash. In particular we provide ef�cient zero-knowledge proofs for
the opening of RSA accumulators, one of the most popular set commitments. First, we show
ef�cient protocols for membership and non-membership of a single element. Then we construct
succinct zero-knowledge membership proofs for multiple elements, where the size of the proof
is independent of the number of elements proven. The two techniques are qualitatively different.
Secondly, we switch our attention to Vector Commitments, with local positional openings.
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We put forth the notion of Incremental Aggregation, in which one can arbitrarily aggregate
opening proofs of any positions into a single (concise) proof and inversely disaggregate a
proof of multiple points to many. We show applications of this notion (1) to speeding up the
proof computation by using precomputation and moderate-sized precomputed values and (2) to
Veri�able Decentralized Storage. Finally, we provide ef�cient construction of Incrementally
Aggregatable Vector Commitments from Groups of Unknown Order.

Thirdly, we turn to Functional Commitments, for linear functions, where one commits to a
vector v and then can open f(v) = y, for a public f . We construct functional commitments that
admit constant-sized public parameters and proofs. To this end, our core technique is a novel
succinct protocol of cardinality for a set committed with an RSA accumulator, which is in turn
based on a Range Proof.
Finally, we show a generic way to turn any Vector Commitment into a Key-Value Map

Commitment for arbitrary keys. A Key-Value Map resembles a Vector but the ordering of the
values is not characterized by subsequent indices but by arbitrary keys. Key-Value Maps are the
core data-structures in Cryptocurrencies like Ethereum. Our construction of Key-Value Map
Commitments is generic and is based on a novel cryptographic application of Cuckoo-Hashing.
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RESUMEN DE LA TESIS DOCTORAL

La última década se ha caracterizado por la aparición de la tecnología Blockchain, afectando la
criptografía. El mani�esto de Blockchains es la Descentralización, en la que la información es
guardada y veri�cada en tiempo real por miles de participantes. Esto centra la atención en dos
necesidades: la información debe ser lo más concisa posible y la veri�cación de los procesos
debe ser rápida. Desde una perspectiva criptográ�ca, esto se traduce en un desiderátum central:
la Compacidad.
En esta tesis, nos ocupamos de un tipo especí�co de primitivas criptográ�cas compactas:

Compromisos Compactos. Los compromisos criptográ�cos son objetos que permiten comprom-
eterse con algunos datos, proporcionando un representante vinculante, de modo que en cualquier
momento posterior se pueden volver a abrir, proporcionando una prueba de apertura. En nuestro
trabajo tratamos compromisos con aperturas más detalladas, donde se puede generar una prueba
de apertura del compromiso con una función f(m) de los datos inicialesm.

En primer lugar, nos ocupamos de compromisos de conjuntos con aperturas privadas de (no)
pertenencia. Construimos pruebas compactas de conocimiento cero para el problema de la (no)
pertenencia a conjuntos. Una prueba de conocimiento cero es una primitiva criptográ�ca que
permite probar una a�rmación, de forma sólida, sin �ltrar ninguna otra información excepto el
hecho de que la a�rmación es cierta. En una prueba de conocimiento cero para la pertenencia
a un conjunto, primero uno se compromete con un conjunto público y luego una parte puede
demostrar la pertenencia al conjunto, pero sin revelar qué elemento del conjunto es exactamente.
Estos compromisos de conjuntos con este tipo de aperturas detalladas son la piedra angular de
las criptomonedas anónimas como Zcash. En particular, proporcionamos pruebas e�cientes de
conocimiento cero para la apertura de acumuladores RSA, uno de los compromisos establecidos
más populares. Primero, mostramos protocolos e�cientes para la membresía y no membresía
de un solo elemento. Luego construimos pruebas compactas de membresía de conocimiento
cero para múltiples elementos, donde el tamaño de la prueba es independiente del número de
elementos probados. Las dos técnicas son cualitativamente diferentes.

En segundo lugar, centramos nuestra atención en los compromisos de vectores, con aperturas
posicionales locales. Presentamos la noción de Agregación Incremental, en la que se pueden
agregar arbitrariamente pruebas de apertura de cualquier posición en una prueba única (concisa)
e inversamente desagregar una prueba de múltiples puntos en muchos. Mostramos aplicaciones
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de esta noción (1) para acelerar el cálculo de la prueba mediante el uso de precómputo y
valores precalculados de tamaño moderado y (2) para el Almacenamiento Descentralizado
Veri�cable. Finalmente, proporcionamos una construcción e�ciente de compromisos vectoriales
incrementalmente agregables a partir de grupos de orden desconocido.

En tercer lugar, pasamos a los compromisos funcionales, para funciones lineales, donde uno
se compromete con un vector v y luego puede abrir f(v) = y, para un f público. Construimos
compromisos funcionales que admiten pruebas y parámetros públicos de tamaño constante. Con
este �n, nuestra técnica principal es un protocolo novedoso y compacto de cardinalidad para un
conjunto comprometido con un acumulador RSA, que a su vez se basa en una prueba de rango.

Finalmente, mostramos una forma genérica de convertir cualquier compromiso de vector en
un compromiso de mapa-de-valores-clave para claves arbitrarias. Un mapa-de-valores-clave se
parece a un vector, pero el orden de los valores no se caracteriza por índices posteriores sino
por claves arbitrarias. Los mapas-de-valores-clave son las estructuras de datos centrales en
criptomonedas como Ethereum. Nuestra construcción de compromisos de mapas de valores
clave es genérica y se basa en una novedosa aplicación criptográ�ca de Cuckoo-Hashing.
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1
INTRODUCTION

1.1 Cryptography

This thesis could not begin in any alternative way than contextualizing Cryptography.

Historical remarks. Historically, Cryptography has been the art of secure communication.
For many centuries, its central purpose was hiding the content of written messages, by producing
a ‘code’–that we call a ‘cipher’–corresponding to the actual content of the message. The goal
was that individuals could not make sense of the cipher, even if carefully reading it, unless
knowing a method to de-cipher back to the message of origin.

Examples of ciphers that have been documented are numerous, starting from the early 1900
BC in ancient Egypt, where signs of ciphers have been found carved in tombs. In ancient Greece,
the spartan military was using a special tool called ‘scytale’ to cipher and de-cipher messages.
Julius Caesar has also also been documented to use the ‘Caesar cipher’ to securely communicate
with his army generals. More recent specimens are, among others, Vigenère cipher and the
famous Enigma machine used by the German military during World War II. Most of the early
ciphers were using a simple substitution; each symbol was consistently substituted by another
one at each appearance in the message. From the 15th century ciphering started getting more
evolved diverging from the simplistic substitution-ciphering, but nevertheless didn’t drastically
change, the main principles remained the same: Concealing of the actual message from the
ciphertext was anticipated based on (1) the heuristic belief that it is dif�cult for a human to revert
a super�cially intricate cipher and, additionally, (2) the general procedure of the code is secret.

Regarding the latter, in 1883 Auguste Kerckhoffs put forward the position that the security
of any crypotsystem should not rely on the obscurity of the method [138]. Everything about the
intelectual methodology and the material used by the cryptosystem should be considered public
knowledge, except for some ephemeral variables of the system: The ‘keys’. The logic behind
this argument is that the design of a cryptosystem that is continuously used cannot remain secret
and will eventually be leaked. Claude Shannon graphically re-produced this concept with the
phrase "the enemy knows the system". Therefore, when designing a cryptosystem we should
assume that our knowledge on the system is public up to the slightest detail. This position
was and still is greatly embraced, forming the ‘Kerckhoffs’ principle’ and is in contrary to the
‘Security through obscurity’ approach. Kerckhoffs’ principle is a standard approach in today’s
Cryptography and henceforth, for this thesis, will be taken for granted.
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CHAPTER 1. INTRODUCTION

The critical point that revolutionized Cryptography was the emergence of modern computing
machines, during the 20th century. It was rapidly realized that advanced computers can break
cryptosystems that were unthinkable to be broken by humans, or at least not in real-time. The
manifestation of this (although not the �rst example of cryptanalysis-by-devices historically)
was the celebrated use of the Bombe machine, designed by Alan Turing, to de-cipher the
messages of the Enigma device.1 The contribution of Alan turing is an early sign of modern
Cryptography and, more generally, Computer Science. With computers available, the target
security of cryptosystems is no longer against adversarial humans but against powerful computers.
Gradually in the 20th century Cryptography started getting irreversibly bound to Computer
Science.

The science of Cryptography. So computers are the ones that converted Cryptography from
‘art’ to ‘science’. Now, Cryptography should follow a systematic process in order to achieve
convincing results. Fundamental to Modern Cryptography is the paradigm of ‘Provable Security’
that consists of the following three:

• De�nition: First we need to rigorously de�ne what we expect from the cryptosystem. What
does it even mean that a system is ‘secure’?

• Assumptions: Then we need to state clearly what are the assumptions under which we are
working. These can be seen as the equivalent of the mathematical ‘axioms’.

• Proof of Security: Finally, we need to give a mathematical proof that our cryptosystem
satis�es the aforementioned de�nition under the aforementioned assumptions.

A De�nition should depict–with mathematical formalization–how the cryptosystem is ab-
stractly working and, more importantly, a mathematical speci�cation of what its ‘security’ means.
It should also specify the "power" of the adversary against which we anticipate the system to
be secure. Typically in today’s standards we want our systems to be secure (at least) against
adversaries that have access to the most powerful existing computer.2 An example security
de�nition could be: "For a ciphering system X, an adversary controling all the computational
power on earth cannot retrieve more than 2% of the bits of the corresponding message, for any
possible message". The provable security paradigm is not concerned with whether the security
speci�cations of a de�nition are suitable enough or not; this is up to human interpretation.
Provable security is a systematic method to claim that the de�nition is satis�ed.

TheAssumptions that wemay take for a cryptosystem can largely vary. Inmany cases they are
related to Computational Complexity Theory. For example one could put forth the assumption
"there is no algorithm running in polynomial time that can solve the boolean satis�ability
problem". This assumption is in turn connected to the Complexity Theory conjecture that
P 6= NP therefore we have some reassurance. Sometimes an assumption can be connected to
the current inability of breaking it, for instance the assumption "factoring a composite integer
cannot be done in polynomial time" can be justi�ed by the fact that this problem has been widely
studied for decades and we do not currently have a solution. Similarly to the De�nition, whether

1The cryptosystem of Enigma was actually intelectually "broken" by the Polish mathematician Marian Rejewski
in 1932. Alan Turing designed the computing machine that could ef�ciently perform de-ciphering in real-time.

2‘Fine-grained Cryptography’ [161] is a �eld of Cryptography that diverges from that assuming less powerful
adversaries. In this thesis we are not concerned with this model.
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an assumption is plausible or not is orthogonal to the provable security paradigm, this can largely
be a subject to human interpretation and, nevertheless, subjective.

The Security Proof is the part of provable security that should be undeniable, being unaffected
by human interpretation. It should follow a clasic mathematical reasoning and in fact security
proofs can be seen as classic mathematical proofs.

Throughout this thesis we will follow this methodology.

Basic Concepts. Although, as we discussed above, for centuries the primary focus of cryptog-
raphy was predominantly centered on the creation of codes to conceal messages, the past century
it tremendously expanded. In a very general sense we can say that its main goal it still Secure
Communication but the signi�cance of both "Secure" and "Communication" can widely vary.
There are endless goals, concepts and classi�cations in Cryptography that we could discuss.
Below we, very brie�y, survey some central notions.

• Symmetric-Key Encryption: Firstly by ‘Encryption’ we refer to the process of tranforming a
message (plaintext) to a cipher (ciphertext) in order to conceal the information of the message.
Conversely by ‘Decryption’ we refer to the inverse process, of retrieving the message from its
corresponding ciphertext.

Symmetric-Key Encryption is a method to Encrypt a message so that it can later be Decrypted
using the same key, but cannot get Decrypted otherwise. The distinguishing trait of Symmetric-
Key Encryption is that both Encryption and Decryption use the same key. Symmetric-Key
Encryption is secure if no computer can retrieve the message without knowing the key. It is
crucial then that the key stays secret otherwise security is trivially compromised.

For example the early ciphers in history discussed above can be seen as Symmetric-Key
Encryption schemes, though insecure under the above de�nition.

• Public-Key Encryption: Public-Key Encryption [93, 184] is the asymmetric version of
Symmetric-Key Encryption. Anyone can, without interaction, Encrypt a message under a
public key that is known to everyone and produce a valid ciphertext. Then only the party
knowing the corresponding secret key can decrypt the cipertext to retrieve the message. Of
course, in order for this to be able to work, the public and secret keys should be somehow
correlated.

The security de�nition is the same as in Symmetric-Key Encryption except the public key can
be known to the potential adversary.

• Digital Signatures: Digital signatures [184] is the analogue to physical signatures. One party–
the Signer–can authenticate/‘sign’ a message using their secret signing key. This signing key
is the analogue to the unique handwriting of physical signatures. Then anyone can verify
that a signature is bound to that speci�c message by using a publicly known veri�cation key
corresponding to the secret key of the signer. Again, the signing (secret) and veri�cation
(public) keys are correlated.

The Digital Signature is secure if no party can forge a valid–under a veri�cation key–signature
on any message without possessing the corresponding signing key.

• Commitments: Imagine that we want to make a claim but we would only like to reveal it
after a speci�c event happens, for instance after 5 hours or after the next rainy day, but in the
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meantime we wish to keep it secret. A physical way to implement it would be to write our
claim in a paper, close it in a locked safe box and open the box only when the desired event
happens.
A cryptographic Commitment scheme [38, 46] captures this scenario. It is a technique to
‘commit’ to an element by generating a representative, the ‘commitment’, so that at any later
point we can ‘open’ it. By ‘open’ we mean that that we can demostrate that the representative
‘commitment’ is for the initial element committed.
The natural security properties that should hold for a commitment scheme are Binding and
Hiding. Hiding captures that the commitment should not betray our element, before we choose
to open it. Binding captures that after committing we are bound to open the original element
and nobody can open it in any different way.

• Zero-Knowledge Proofs: A Zero-Knowledge Proof [122] is a cryptographic scheme that
allows one party (the Prover) to prove a statement to some other party (the veri�er) without
leaking any other information except for the fact proven. The prover and the veri�er may
interact with each other some times before the veri�er gets convinced.
The security properties that are required are Soundness and Zero-Knowledge. Soundness
is a property that protects the veri�er from malicious provers: No prover–using whatever
strategy–should be able to convince the veri�er for an invalid statement. Zero-Knowledge, on
the other hand, protects the prover: Even if the veri�er is maliciously behaving they should
not be able to learn anything else from their participation in the zero-knowledge protocol
except for the fact that the proven statement holds.

• SecureMulti-Party Computation: Secure Multi-party Computation [217, 121] is the �eld of
Cryptography that designs protocols so that multiple parties can securely compute a function.
For example assume that party 1 has input x1, party 2 has input x2, up to party n having input
xn. Then these parties want to collaboratively compute a public function f with these inputs,
i.e. to learn y = f(x1, . . . , xn). However, they do not desire to leak their inputs to the other
parties. This (with different variations) is precisely the objective of Multi-party Computation.

• Cryptanalysis: Cryptanalysis is the �eld of Cryptography that analyzes cryptosystems in
order to �nd �aws, primarily in the security of the system. Cryptanalysis of provably secure
cryptographic schemes is typically in the assumptions taken, but can even be in the security
proof. Another type of Cryptanalysis has to do with �nding practical attacks in cryptosystems
that are only heuristically (instead of provably) secure.

• Foundations of Cryptography: Foundations of Cryptography refers to the effort of identify-
ing the (typically minimal) assumptions from which we can build Cryptography.

• Advanced Cryptographic Primitives: There are numerous cryptographic primitives pro-
viding advanced functionalities that do not fall in any of the above categories. Examples
include Pseudorandom Functions [120], Anonymous Credentials [70], Fully Homomorphic
Encryption [116], Functional Encryption [43] (e.g. Identity-based Encryption [193, 41],
Attribute-based Encryption [186, 124]) and Indistinguishability Obfuscation [133] and many
more.

Looking ahead, this thesis predominantly falls within the categories of Commitments and
Zero-Knowledge Proofs. Furthermore, from now on when referring to “Cryptography” we will
be meaning “Constructive Cryptography”, otherwise we will crearly state “Cryptanalysis”.
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Quantum Computers and Cryptography. Cryptography �ourished in the 20th century, as
earlier described, due to the emergence of modern digital computers. Its development was, in
consequence, built upon the computational model of digital computers. Both the capabilities of
the cryptosystem and the adversary were modeled according to the classical binary computer
model. In 1980 Paul Benioff proposed an alternative computational model based on quantum
physics [34], the theoretical core of what we call today ‘Quantum Computer’. In 1993 Peter
Shor showed that in the quantum computation model there are ef�cient algorithms that can
break fundamental problems in Cryptography that were assumed to be hard: the Factoring and
Discrete-logarithm problems [195]. In essence, this directly showed that if quantum computers
are physically built then a great part of cryptosystems known at the time (and even today a large
fraction of them) would be broken.

Full-�edgedQuantumComputers with reasonable–to break cryptographic schemes–computing
power have not been produced to date. The challenge is in constructing the actual hardware for
quantum computation. However, there are very intense efforts in developing them.
This could not leave Cryptography unaffected. The ‘Quantum Threat’ gave birth to two

different developments in Cryptography: The ‘Post-Quantum Cryptography’ and the ‘Quantum
Cryptography’. Post-Quantum Cryptography is concerned with protecting classical cryptosys-
tems against Quantum Computers. In that the model of the computation for the cryptosystem is
still the one of binary electronic computers but the adversary of the cryptosystem is assumed to
be a Quantum Algorithm (using a quantum computer). For example Post-Quantum Cryptogra-
phy is based on problems that are (plausibly) secure against quantum algorithms, for example
Lattice-based problems [4, 131, 175] or Isogeny-based problems [82, 185, 65, 90]. On the other
hand in Quantum Cryptography everything works on quantum computers, both the cryptosystem
and the adversary.

We note that most of the results of this thesis fall in neither of these two categories. Our
results are in the ‘Classical Cryptography’ setting.

1.2 Desiderata of modern Cryptography: Succinctness and more

Today’s Cryptography is all about ef�ciency.

This provocative opening statement is of course not entirely true, but graphically captures
the recent trends in Cryptography. After decades of research it’s safe to say that in terms of
functionality most aspirations of Cryptography have been either met or proven impossible to be
ever met. The examples of phenomenal success stories are endless, we have Symmetric-Key
Encrpytion, Public-Key Encryption, Digital Signatures, Zero-Knowledge proofs for all NP,
Secure Multi-party computation for all functions. The list can be enriched with much more
advanced cryptographic primitives that were notoriously hard to be obtained like Identity-based
Encryption [41], Fully Homomorphic Encryption [116] or even, recently, Indistinguishability
Obfuscation [133].

The intriguing research questions in today’s Classical Cryptography are to a great extent not
of the form "Can we we build X?" but rather: "Can we we build X with Y ef�ciency properties?"
or "We know we can build X from Y assumptions, can we build it from Z assumptions?". The �rst
category of questions is about Ef�ciency while the second is about Assumptions. These are very
crucial concepts in recent developments in Cryptography, and in this work most of the questions
that we answer are of these types.
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By ‘Ef�ciency’ we refer to improving some metrics of the cryptosystem that are already
in the feasibility (polynomial-time) realm. These metrics may include: the bit-size of some
variable of the system, the running time of an algorithm, the number of rounds that some parties
have to interact, etc. The Ef�ciency improvement can be either asymptotic (e.g. from O(n2)
runnning time to O(n log n)) or even concrete (e.g. ciphertext size from 10KB to 9KB or from
3 communication rounds to 2).

Before proceeding, it’s important to acknowledge the existence of other signi�cant research
avenues beyond Ef�ciency and Assumptions, outside Clasical Cryptography. In Quantum
Cryptography there are various unexplored directions about what can be achieved. Unlike
Classical Cryptography, there it cannot be claimed that the �eld has reached the same level of
maturity to have answers to most of the fundamental questions. Another �eld that has different
objectives is the one of Cryptanalysis, where the efforts are focused on breaking assumptions,
cryptosystems or implementations. Finally, we should note that there is the �eld of Secure
Cryptographic Implementations that also has different objectives.

Succinctness. Succinctness (or conciseness) is a special Ef�ciency-property that is on the core
of numerous cryptographic schemes. But what is Succinctness? By ‘Succinctness’ we typically
refer to an (at least) exponential improvement3 on the bit-size of a value of the cryptosystem.
Assume that a cryptosystemA takes n inputs x1, . . . , xn and outputs a value y of size |y| = O(n).
We say that succinctness is achieved in cryptosystem B if it has the same functionality but with
an output of size O(log n) or O(1).
In general, the power of Succinct Cryptographic primitives is that they can process very

large data producing at the end very condensed outcomes. This is of extreme importance since
typically these outcomes are the elements that are communicated. As we will see in the next
sections, in many occasions it is prohibitive to communicate all the data processed.

Succinctness is a highly non-trivial property to achieve and in most cases it requires a radical
change in the approach. For some important �elds of modern Cryptography, the entire �eld
would not even exist if Succinctness was not a prerequisite.

Take for example the case of Veri�able Computation. There there two distinct parties with
unbalanced computational power, one performing over a weak machine (e.g. a mobile phone)
and another on a powerful one (e.g. on a cluster of computers). Then the computational weak
party (W) wants to outsource an intensive comutation to the strong one (S). However, W wants
to make sure that the computation was performed correctly by S. This is exactly the concept of
Veri�able Computation.

Now, Cryptography comes in to ensure integrity: That the computation was performed
correctly. Apparently, by de�nition of the problem, S cannot send the steps of the computation
to W. So Cryptography should provide a Succinct solution to the problem: Integrity should
be ensured in a way that the certi�cates "ensuring" it are much smaller than the size of the
computation itself. Of course, without Succinctness a Veri�able Computation primitive makes
no sense.
There are many more interesting scenarios in which we have unbalanced computational

power between communicating parties like the above. In what follows we discuss more examples.

In this thesis Succinctness is a central notion. Almost all of the problems we deal with in this
3In the literature sometimes ‘Succinctness’ is also used for polynomial improvements, e.g. quadratic, cubic, etc.

In this work we always use the term for exponential improvements.
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work could be solved with basic results of Cryptography, if we didn’t require the cryptosystems
to be succinct.

1.3 The era of Decentralization

Enter Satoshi Nakamoto.

In October 2008, someone with the pseudonym ‘Satoshi Nakamoto’ published a whitepaper
with the title "Bitcoin: A peer-to-peer electronic cash system" [165]. The whitepaper was
introducing a digital currency with the name "Bitcoin". This was meant to be one of the most
groundbreaking inventions of the 21st century.
Bitcoin is a decentralized digital currency. To begin with, think about the digital banking

payment system; this can already be regarded as digital currency. However, apparently it is
centralized, there is a clear central party that controls pretty much everything: the participants
of the system, the transactions that occur and in some extreme cases even the balances of the
participants. The main principles that accompany ‘decentralization’ are the extreme opposite,
no single authority can control the system. Every single step that the system performs should be
approved by "everyone" (or at least by the majority) participating in the system.4 In Bitcoin,
and in any decentralized digital currency, anyone can openly participate and none can prevent a
transaction from happening (as long as it follows some elementary rules of validity).

Abstractly, a digital currency can be fully determined by a book that contains all the informa-
tion about its variables: Some initial state of balances for each initial participant and afterwards
the full history of all transactions. We call this book ‘the ledger’. In centralized banking systems
the ledger is a database that the bank has exclusive rights to. In contrast, in Bitcoin the ledger
should be public and maintained collaboratively by the participants of the system. So on the core
of Bitcoin is this public ledger which is called ‘the Blockchain’. Bitcoin provides a mechanism
to maintain consistently and securely ‘the Blockchain’, which of course should contain valid
transactions.
After Bitcoin’s deployment, at the beginning hesitantly but later massively, many other

similar (or even identical) concepts arose. This generated the so-called ‘Cryptocurrencies’ or,
more broadly, ‘Blockchain Technology’. For instance, the �rst important milestone that evolved
Bitcoin and Cryptocurrencies was Ethereum [54] that introduced the concept of ‘Smart Contracts’
(somehow analogously to physical contracts). Today, we can say that the Blockchain Technology
has moved far beyond Bitcoin and Cryptocurrencies. We just mention a few examples of
decentralized systems: Smart Contracts [54], Distributed Storage Networks [144], Decentralized
Identity (DID) systems [205, 206, 204], Decentralized Autonomous Organization [130] and
much more.

But how are Decentralized Systems related to Cryptography, and more generally to Computer
Science? Roughly speaking there are primarly three �elds of Computer Science that play an
important role in Blockchain Technology: Cryptography, Distributed Systems and Game Theory.
Cryptography’s role is twofold, �rst to ensure the validity of the operations (e.g. transactions)
and second to ensure the overall consistency of the "pages" of the ledger, in other words to
"bind" all the states of the ledger. The role of Distributed Systems is to provide a consensus
mechanism to the participants. That is, a way so that all the distributed users agree on the same

4This is a somewhat incorrect simpli�cation of how Bitcoin works, used for the sake of a gentle introduction.
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public ledger. Finally, Blockchain heavily realies on economic incentive mechanisms that Game
Theory can analyze (or sometimes design).
These three �elds and in particular Cryptography, the domain of this thesis, have been

tremendously impacted the last decade (if not more) from the rise of Blockchain technology
and Decentralized systems. This impact is also present is this thesis. Although our results are
cryptographic, the scope and the applications of the results are in�uenced from the Blockchain
world. One way to think about it is that the emergence of Blockchain gave a different signi�cance
to some of the cryptographic results.

In particular, a concrete aspect of blockchain technology that is closely relevant to our work
is the ‘State’ of the blockchain. As overviewed above the blockchain is the ledger that contains
all the history of the system, for example in cryptocurrencies all the transactions that have
occured. But then for the continuous operation of the system there is a more speci�c information
that is necessary, that can be extrapolated from the history. This is the state. For example in
(some type of) cryptocurrencies the state is the balances of all the users. The set of balances
allows us to say if a transaction is valid (if the balance is larger than the amount spent) or not.
Of course, one could just go through the whole history of the blockchain to verify a single
transaction but that would be an overkill. A similar concept of ‘state’ exists in pretty much all
the decentralized systems. In conclusion, we could say that the state of the blockchain is the
information needed to verify the processes of the system.

So the pattern is "given a state S I want to verify that X holds". Although this is something
that can be naively checked if having S and X , it is not ideal in many cases. For example the
state S itself is large and grows with the popularity of the Blockchain, this is a ‘Scalability’
problem. In other Decentralized Systems some part of the argument X should be kept private,
this is a ‘Privacy’ problem. Cryptography comes into play in this pattern, trying to resolve both
Scalability and Privacy. Succinctnes is once again crucial: we want to somehow treat the state S
in a way that the cryptographic outputs are much smaller than its size.

We will concretize this is the next sections.

1.4 Succinct Commitments and Fine-Grained Openings

Warm-up.

Here we give a brief overview of the different notions of Succinct Commitments with
Fine-Grained Openings. We elaborate more on the actual constructions and the rich literature
in Chapter 2.

Commitment schemes are one of the most fundamental cryptographic primitives. They can
be seen as the digital equivalent of a sealed envelop: committing to a message m is akin to
puttingm in the envelop; opening the commitment is like opening the envelop and revealing
the value inside. They have two basic properties. Hiding guarantees that a commitment reveals
no information about the underlying message. Binding instead ensures that one cannot change
its mind about the committed message; namely, it is not possible to open a commitment to two
distinct valuesm 6= m0. This is the simplest form of cryptographic commitments that we will
also call ‘plain’ commitments.

Notably, there is an additional intruiging property that various commitment schemes happen
to have; the commitment value to the message is Succinct! This means that for many popular
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commitment schemes, as for example the Pedersen commitment [174], regardless of the size of
the messagem the resulting commitment C has the same size. For example, whether the bit-size
ofm is |m| = 1 bit or |m| = 10 GB the commitment C has the same size, for example 256 bits.
Therefore, the commitment C, from an alternative standpoint, is a compressing representation
of the messagem. This view of commitments make them an extremely valuable building block
for modern Cryptography.

This fascinating property may not have been a direct objective in the earliest realizations of
commitments, but there is an elegant theoretical explanation behind the property. It is a well-
known fact that cryptographic commitments cannot be both perfectly (or statistically) binding
and perfectly (or statistically) hiding. Now assume that a commitment scheme is perfectly
hiding, thus ‘not perfectly’5 binding. This in turn means that the commitment function that maps
messages to commitment values is not injective (otherwise the binding would be perfect). So
the function is compressing: The range of the function is smaller than the domain. An informal
corollary is therefore that every ‘not perfectly’ binding (or any perfectly hiding) commitment is
compressingm.

Until now the discussion was restricted to plain commitment schemes. In those, the opening
functionality is the most straightforward one can imagine: I just want to show the message that
was committed. In a way it is an all-or-nothing opening function. But what if we want to provide
more elaborate opening capabilities? For example: I want to commit tom but later reveal only
its �rst bit, or just reveal that f(m) = 1 for some public function f .

Succinct Commitments with Fine-Grained Openings (i.e. that do not restrict themselves to an
all-or-nothing opening capability) have been objects of intense research the past decade and they
are also in the core of this thesis. Below we brie�y recall some popular types of Fine-Grained
Openings for Succinct commitments.

1.4.1 Set Accumulators

Set accumulators are commitments to sets with a special type of opening: Set membership
opening.
A naive approach to check if an element is in a set is to go through all its entries. The

complexity of this approach, however, is linear in the size of the set. How to ef�ciently verify set
membership then? Cryptographic accumulators [29] provide an elegant solution to this problem.
They allow a set of elements to be compressed into a succinct set commitment (the accumulator
value or digest) and to generate membership proofs that are succinct and fast to verify. As a
security guarantee we naturally require that it should be computationally infeasible to generate a
false membership proof.
As of today, accumulators can be built from the following settings: hash-based (Merkle

Trees) [162], RSA-based [29, 18], pairing-based [167] and lattice-based [220].

1.4.2 Vector Commitments

A Vector commitments (henceforth VC) [150, 66] is a special class of commitment schemes in
which one can commit to a vector of elements v of length n and to later open the commitment
at any position i 2 [n]. In other words, one can convince a veri�er that vi is the i-th committed

5By ‘not perfectly’ we mean ‘computationally’. Even though one could potentially open a commitment to two
different valuesm,m

0, we assume that this is computationally infeasible (e.g. exponential running time).
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value. Typically in VCs, the opening requires an addtional–to vi–value to be outputted in order
to get the veri�er convinced: the opening proof. One can observe that (plain) commitments are
already eligible as vector commitments: Using a (plain) commitment scheme we can separately
commit to each element of v, v1, . . . , vn, provide the n commitments as the commitment to the
vector and later open the commitment at the position i. However, the distinguishing feature of
VCs is Succinctness: Both the commitment and an opening for any position i have size either
independent of or poly-logarithmic in n. This property is, as usual, the one that makes the
primitive challenging to construct. In terms of security, VCs should be position binding, i.e.,
one cannot open a commitment at position i to two distinct values vi, v0i. Interestingly, although
one can also de�ne a hiding property (analogously to plain commitments), in most applications
we do not require this property.

VCs were formalized by Catalano and Fiore [66] who also proposed two constructions based
on the CDH assumption in bilinear groups and the RSA assumption respectively. Noteworthy is
that Merkle trees [162] are VCs with O(log n)-size openings. Vector Commitments can also be
instantiated from lattices, either resembling the Merkle tree structure [171, 148] or, recently,
purely algebraicly [176].

Subvector Commitments. Two recent works [40, 145] proposed new constructions of vector
commitments that enjoy a new type of opening subvector openings (also called batch openings
in [40]) generalizing the opening of VCs. A VC with subvector openings (called SVC, for short)
allows one to open a commitment at a collection of positions I = {i1, . . . , im} while keeping
the proof-size unaffected, namely of size independent (or polylogarithmic) of the vector’s length
n and the subvector lengthm.

1.4.3 Key-Value Map Commitments

In a nutshell, a Key-Value Map Commitment (henceforth KVC) is a generalization of Vector
Commitments in which one commits to a collection of key-value pairs (ki, vi), where ki indicates
the ‘position’ of the element in the map and vi is the actual value. Afterwards, one can open
the value of any key of the committed map. As usual, we require both the commitment and the
opening values to be Succinct. One may observe that VCs are a special case of KVCs where
keys are the consecutive integers in {1, . . . , n}. Hence, the challenge is to realize KVCs with
large arbitrary keys.
Existing schemes are based on hidden-order groups [40, 3], hash functions [162] or, very

recently, lattices [89].

1.4.4 Polynomial Commitments

In Polynomial Commitments [137] (PCs) one can commit to a polynomial f . The opening
functionality says that later they can open the polynomial to any evaluation point x, that is they
can provide a proof that the initially committed polynomial f if evaluated at x gives y, f(x) = y.
The crucial property of polynomial commitments is succinctness, both the commitment and the
opening should be at most polylogarithmic in the degree of the polynomial f . Again, without
this strigent ef�ciency property polynomial commitments would be already be implied from
plain commitments. We could produce one commitment for each coef�cient of the polynomial
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and at the opening phase just open all the coef�ents and let the veri�er evaluate the polynomial
themselves.
The security properties related to polynomial commitments are Evaluation Binding and

Hiding. Evaluation Binding says that it should be infeasible to open a polynomial commitment
to an evaluation point x with two different claimed outputs y, y0. Hiding intuitively demands
that both the commitment and the evaluation opening do not leak anything about the committed
polynomial, except, of course, the evaluation opening leaking f(x).
The notion of Polynomial Commitments was introduced by Kate, Zaverucha and Gold-

berg [137], where they also gave a pairing-based construction. Other realizations include
constructions from hash functions [209, 27] and, recently, lattices [5].

1.4.5 Functional Commitments

Functional Commitments (henceforth FCs) are Succinct Commitments with the most general
form of openings. FCs were proposed by Libert, Ramanna, and Yung [149]. In FC, the sender
commits to a vector v of length n and can later open the commitment to functions f(v) of the
committed vector. A distinguishing feature of FCs is that commitment and openings should be
short, namely of size logarithmic or constant in n. In terms of security, binding for FCs means
that the sender cannot open the same commitment to two different outputs of the same function,
i.e., to prove that both y and y0 6= y are f(v). Functional commitments generalize (Sub)VCs
and PCs: Both are FCs for a special class of functions.

In terms of realizations, Libert et al. [149] proposed an FC construction for linear functions
from Pairings. Very recently, three concurrent works constructed FCs for any function, from
lattices [89, 214, 15] and pairings [15].

1.5 Our contributions

The main event.

In this section we summarize the techincal contributions of the thesis. In order to not
overwhelm the introduction, the summary of this section is–to the best possible–kept high-level.
We are mostly motivating the contributions of this work and contextualizing the actual results.
A more technically elaborate statement of the contributions is provided at the beginning of each
technical chapter.

1.5.1 Zero-Knowledge Proofs for Set Membership of Singletons

The problem of proving set membership—that a given element x belongs to some set S—arises
in many applications, including white/black-lists, voting and anonymous credentials, among
others. More recently, this problem also appears at the heart of currency transfer and identity
systems over blockchains.

Core to blockchains is the maintenance of the global state of the system across its nodes. This
state is usually large and is encoded in data structures such as a UTXO set (unspent transaction
outputs, intuitively the unspent coins) in Bitcoin and Zcash [24, 207], the set of account-balances
in Ethereum, or the set of identities in Decentralized Identity (DID) systems (e.g., Iden3, Sovrin,
Hyperledger Indy) [205, 206, 204]. In these systems executing a transaction typically involves
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two steps, one “local” and one “global”: (i) checking a given property with respect to the
current state (e.g., the transaction is properly signed, some coins are spendable, some credentials
exist), and (ii) modifying the global state (e.g., updating balances, adding a credential) and
checking its correct update. The validity checks that are local to the transaction can for example
involve checking a digital signature. Checking against the global state typically translate into
set-membership (x 2 S) or set-update (S0 ?

= S \{x}[{x0}). Blockchain systems grow through
time and so do their global states. Verifying this state at scale is a challenging problem: Every
user, even one that only “passively” looks at the history of transactions, must re-execute them
and store them to verify future ones.

A naive approach is to check if an element is in a set is to go through all its entries. The com-
plexity of this approach, however, is unacceptable in many scenarios. Especially in blockchains,
most of the parties (the veri�ers) should run quickly.
How to ef�ciently verify set membership then? Cryptographic accumulators [29] provide

a solution to this problem, allowing a set of elements to be compressed into a short value
(the accumulator) and to generate membership proofs that are short and fast to verify (see
Section 1.4.1). This idea [187, 201, 95] splits users into two groups. More “passive” users (aka
veri�ers) store only a succinct digest of the large set. A user proposing a transaction, on the
other hand, has more information on the state (e.g., their account information) that it can use to
prove the membership of some elements with respect to the digest.

As of today, we can divide constructions for accumulators into three main categories: Merkle
Trees [162]; RSA-based [18, 57, 147, 40]; pairing-based [167, 88, 56, 224]. Approaches based
on Merkle Trees1 allow for short (i.e.,O(1)) public parameters and accumulator values, whereas
the witness for membership proofs is of size log(n), where n is the size of the set. In RSA-based
constructions (which can be actually generalized to any group of unknown order [152], including
class groups) both the accumulator and the witness are each a single element in a relatively
large hidden-order group G,2 and thus of constant-size. Schemes that use pairings in elliptic
curves such as [167, 56] offer small accumulators and small witnesses (which can each be
a single element of a prime order bilinear group, e.g., 256 bits) but require large parameters
(approximately O(n)) and a trusted setup.

In anonymous cryptocurrencies, e.g. Zerocash [24] (but also in other applications such as
Anonymous Credentials [69] and whitelists), we also require privacy. That is, parties in the
system would not want to disclose which element in the set is being used to prove membership.
Phrased differently, one desires to prove that u 2 S without revealing u, or: the proof should be
zero-knowledge [122] for u. As an example, in Zerocash users want to prove that a coin exists
(i.e. belongs to the set of previously sent coins) without revealing which coin it is that they are
spending.

In practice it is common that this privacy requirement goes beyond proving membership. In
fact, these applications often require proving further properties about the accumulated elements,
e.g., that for some element u in the set, property P (u) holds. And this without leaking any more
information about u other than what is entailed by P . In other words, we desire zero-knowledge
for the statement R⇤(S, u) := “u 2 S and P (u)”.

One way to solve the problem, as done in Zerocash, is to directly apply general-purpose zero-
knowledge proofs for R⇤, e.g., [172, 126]. This approach, however, tends to be computationally

1We can include under this class currently known lattice-based accumulators such as [171, 148].
2The group G is typically Z⇤

N where N is an RSA modulus. The size of an element in this group for a standard
128-bit security parameter is of 3072 bits.
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intensive for the prover and ad-hoc. One of the questions we aim to tackle is that of providing a
more ef�cient proof systems for set membership relations, that can also be modular.
Speci�cally, as observed in [61], the design of practical proof systems can bene�t from a

more modular vision. Amodular framework such as the one in [61] not only allows for separation
of concerns, but also increases reusability and compatibility in a plug-and-play fashion: the
same proof system is designed once and can be reused for the same sub-problem regardless of
the context3; it can be replaced with a component for the same sub-problem at any time. Also, as
[61] shows, this can have a positive impact on ef�ciency since designing a special-purpose proof
system for a speci�c relation can lead to signi�cant optimizations. Finally, this compositional
approach can also be leveraged to build general-purpose proof systems.

In this work we focus on applying this modular vision to designing succinct zero-knowledge
proofs for set membership. Following the abstract framework in [61] we investigate how to
apply commit-and-prove techniques [64] to our setting. Our approach uses commitments for
composability as follows. Consider an ef�cient zero-knowledge proof system ⇧ for property
P (u). Let us also assume it is commit-and-prove, i.e. the veri�er can test P (u) by simply
holding a commitment c(u) to u. Such ⇧ could be for example a commit-and-prove NIZK
such as Bulletproofs [52] or a commit-and-prove zkSNARK such as LegoGroth16 from [61]
that are able to operate on Pedersen commitments c(·) over elliptic curves. In order to obtain a
proof gadget for set membership, all one needs to design is a commit-and-prove scheme for the
relations “u 2 S” where both u and S are committed: u through c(u) and S through some other
commitment for sets, such as an accumulator.

Our main contribution is to propose a formalization of this approach and new constructions
of succinct zero-knowledge commit-and-prove systems for set membership. In addition, we
also extend our results to capture proofs of non-membership, i.e., to show that u /2 S. For our
constructions we focus on designing schemes where c(u) is a Pedersen commitment in a prime
order group Gq. We focus on linking through Pedersen commitments as these can be (re)used in
some of the best state-of-the-art zero-knowledge proof systems for general-purpose relations
that offer for example the shortest proofs and veri�cation time (see, e.g.,[126] and its ef�cient
commit-and-prove variant [61]), or transparent setup and logarithmic-size proofs [52].

Prior Approaches for Proving Set Membership for Pedersen Commitments. The accumu-
lator of Nguyen [167], by the simple fact of having a succinct pairing-based veri�cation equation,
can be combined with standard zero-knowledge proof techniques (e.g., Sigma protocols or the
celebrated Groth-Sahai proofs [128]) to achieve a succinct system with reasonable proving and
veri�cation time. The main drawbacks of using [167], however, are the large public parameters
(i.e. requiring as many prime group elements as the elements in the set) and a high cost for
updating the accumulator to the set, in order to add or remove elements (essentially requiring to
recompute the accumulator from scratch).
By using general-purpose zkSNARKs one can obtain a solution with constant-size proofs

based on Merkle Trees: prove that there exists a valid path which connects a given leaf to the
root; this requires proving correctness of about log n hash function computations (e.g., SHA256).
This solution yields a constant-size proof and requires log n-size public parameters if one uses
preprocessing zkSNARKs such as [172, 126]. On the other hand, often when proving a relation

3For instance, one can plug a proof system for matrix product C = A ·B in any larger context of computation
involving matrix multiplication. This regardless of whether, say, we then hash C or if A,B are in turn the output of a
different computation

14



CHAPTER 1. INTRODUCTION

such as R⇤(S, u) := “u 2 S and P (u)” the bulk of the work stems from the set membership
proof. This is the case in Zcash or Filecoin4 where the predicate P (·) is suf�ciently small.

Finally, another solution that admits constant-size public parameters and proofs is the protocol
of [57]. Speci�cally, Camenisch and Lysyanskaya showed how to prove in zero-knowledge that
an element u committed in a Pedersen commitment over a prime order group Gq is a member of
an RSA accumulator. In principle this solution would �t the criteria of the gadget we are looking
for. Nonetheless, its concrete instantiations show a few limitations in terms of ef�ciency and
�exibility. The main problem is that, for its security to hold, we need a prime order group (the
commitment space) and the primes (the message space) to be quite large, for example5 q > 2519.
But having such a large prime order group may be undesirable in practice for ef�ciency reasons.
In fact the group Gq is the one that is used to instantiate more proof systems that need to interact
and be linked with the Pedersen commitment.

1.5.2 Zero-Knowledge Proofs for Batch Set Membership

The above approach only supports membership proofs of a single element. But what if we want,
for instance, provem transactions at once? The above approach scales poorly when proving
many transactions: m transactions requirem proofs.

We continue the study of privacy-preserving proofs for RSA (more precisely Hidden Order
Groups) accumulators. Privacy aside, RSA accumulators natively support ef�cient batching of
membership proofs: The size of a membership proof form elements is O(1), exactly the same
as for 1 element, regardless ofm. However, this requires that during veri�cation them elements
are known, which, of course, lacks privacy. Prior, to our work it was not known how to enhance
batch proofs for RSA accumulators with zero-knowledge.

We provide a solution to this problem introducing a succinct zero-knowledge proof technique
for proving membership of a batch of m elements. The proof size and veri�cation time of
our protocol are independent, O(1), of both the size of the set n and the size of the batch m.
Analogously to our previous contribution, the proof is modular and, following the commit-
and-prove paradigm, is composable with any arbitrary statement for the elements that proving
membership for.

1.5.3 Incrementally Aggregatable Vector Commitments

As mentioned in Section 1.4.2, Vector commitments (VCs) [150, 66] are a special class of
commitment schemes in which one can commit to a vector v of length n and to later open the
commitment at any position i 2 [n].

VCs were formalized by Catalano and Fiore [66] who also proposed two constructions based
on the CDH assumption in bilinear groups and the RSA assumption respectively. Both schemes
have constant-size commitments and openings but suffer from large public parameters that are
O(n2) and O(n) for the CDH- and RSA-based scheme respectively. Noteworthy is that Merkle
trees [162] are VCs with O(log n)-size openings.

4https://filecoin.io
5More speci�cally: the elements of a set need to be prime numbers in a range (A,B) such that q/2 > A

2 � 1 >

B · 22�st+2. If aiming at 128 bits of security level one can meet this constraint by choosing for example A = 2259,
B = 2260 and q > 2519.
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Then in 2019, two concurrent works introduced the notion of subvector openings [40, 145]
in which one can open a commitment at a collection of positions I = {i1, . . . , im} without
increasing the size of the proof (or of the commitment). This property has been shown useful for
reducing communication complexity in several applications, such as PCP/IOP-based succinct
arguments [145, 40] and keyless Proofs of Retrievability (PoR) [105].

Here, we continue the study of VCs with subvector openings with two main goals: (1)
improving their ef�ciency, and (2) enabling their use in decentralized systems.

With respect to ef�ciency, although the most attractive feature of SVCs is the constant size
of their opening proofs, a drawback of all constructions is that generating each opening takes at
least time O(n) (i.e., as much as committing). This is costly and may harm the use of SVCs in
applications such as the ones mentioned above.

When it comes to decentralization, VCs have been proposed as a solution for integrity of a
distributed ledger (e.g., blockchains in the account model [40]): the commitment is a succinct
representation of the ledger, and a user responsible for the i-th entry can hold the corresponding
opening and use it to prove validity of vi. In this case, though, it is not obvious how to create a
succinct subvector opening for, say,m positions held by different users each responsible only of
its own position/s in the vector. We elaborate more on the motivation around this problem in
Section 1.5.3.2.

1.5.3.1 A new notion for SVCs: incremental aggregation

To address these concerns, we de�ne and investigate a new property of vector commitments
with subvector openings called incremental aggregation. In a nutshell, aggregation means that
different subvector openings (say, for sets of positions I and J) can be merged together into
a single concise (i.e., constant-size) opening (for positions I [ J). This operation must be
doable without knowing the entire committed vector. Moreover, aggregation is incremental if
aggregated proofs can be further aggregated (e.g., two openings for I [J andK can be merged
into one for I [ J [K, and so on an unbounded number of times) and disaggregated (i.e., given
an opening for set I one can create one for anyK ⇢ I).

While a form of aggregation is already present in the VC of Boneh et al. [40], there it can be
performed only once. In contrast, we de�ne (and construct) the �rst VC schemes where openings
can be aggregated an unbounded number of times. This incremental property is key to address
ef�ciency and decentralized applications of SVCs, as we detail below.

Incremental aggregation for ef�ciency. We show that any Incrementally Aggregatable SVCs
admits ef�cient online proof computation, using of�ine precomputation. We demonstrate
this for any Incrementally Aggregatable SVCs by introducing generic algorithms for ef�cient
precomputation and online proof computation, assuming the Incremental Aggregation property.
Notably, the precomputation technique is �exible allowing for tradeoffs between precomputed
information stored and online computation time.

Incremental aggregation for decentralization. Essentially, by its de�nition, incremental ag-
gregation enables generating subvector openings in a distributed fashion. Namely, consider a
scenario where different parties each hold an opening of some subvector; using aggregation they
can create an opening for the union of their subvectors, moreover the incremental property allows
them to perform this operation in a non-coordinated and asynchronous manner, i.e. without the
need of a central aggregator. We found this application of incrementally aggregatable SVCs
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to decentralized systems worth exploring in more detail. To fully address this application, we
propose a new cryptographic primitive called veri�able decentralized storage which we discuss
next.

From Updatable VCs to Veri�able Decentralized Storage. In their seminal work on VCs,
Catalano and Fiore [66] also de�ned updatable VCs. This means that if one changes the i-th
value of a vector from vi to v0i it is possible to update: a commitment C to v into a commitment
C 0 to v0, a valid opening for C (at any position) into a valid opening for C 0. And importantly,
these updates can be done without knowing the entire vector and in time that depends only on
the number of modi�ed positions. As an application, in [66] it is shown how updatable VCs can
be used to realize veri�able databases (VDB) [28], a primitive that enables a client to outsource
a database to an untrusted server in such a way that the client can retrieve (and update) a DB
record and be assured that it has not been tampered with by the server.
In this work we study how to extend this model to a scenario where storage is distributed

across different nodes of a decentralized network. This problem is motivated by the emerging
trend of decentralized storage networks (DSNs), a decentralized and open alternative to tradi-
tional cloud storage and hosting services. Filecoin (which is built on top of IPFS), Storj, Dat,
Freenet and general-purpose blockchains like Ethereum6 are some emerging projects in this
space.

Our contribution is to put forward a new cryptographic primitive called veri�able decen-
tralized storage (VDS) that can be used to obtain data integrity guarantees in DSNs. We propose
a de�nition of VDS and a construction obtained by extending the techniques of our VC scheme;
in particular, both incremental aggregation and the arguments of knowledge are key ingredients
for building a cost-effective VDS solution.

In the following section we elaborate on the VDS problem: we begin by discussing the
requirements imposed by DSNs, and then give a description of our VDS primitive and realization.

1.5.3.2 Veri�able Decentralized Storage

Decentralized Storage Networks. Openness and decentralization are the main characteristics
of DSNs: anyone can enter the system (and participate as either a service provider or a consumer)
and the system works without any central management or trusted parties. Abstracting from the
details of each system, a DSN consists of participants called nodes that can be either a storage
provider (aka storage node) or a client node. Akin to centralized cloud storage, a client can
outsource the storage of large data; the key difference of DSN however is that storage is provided
by, and distributed across, a collection of nodes that can enter and leave the system at their wish.
Also, DSNs can have some reward mechanism to economically incentivize storage nodes.

The openness and the presence of economic incentives raise a number of security questions
that need to be solved in order to make these systems viable. In this work, we focus on the basic
problem of ensuring that the storage nodes of the DSN are doing their job properly, namely:

How can any client node check that the whole DSN
is storing correctly its data (in a distributed fashion)?

6https://filecoin.io, https://storj.io, https://datproject.org, https://freenetproject.o
rg, https://www.ethereum.org
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While this question is well studied in the centralized setting where the storage provider is a
single server, for decentralized systems the situation is less satisfactory. In what follows we
elaborate on the problem and the desired requirements, and then on our solution.

The Problem of Veri�able Decentralized Storage in DSNs. Consider a client who outsources
the storage of a large �le F , consisting of blocks (F1, . . . , FN ), to a collection of storage nodes.
A storage node can store a portion of F and the network is assumed to be designed in order to
self-coordinate so that the whole F is stored, and to be fault-resistant (e.g., by having the same
data block stored on multiple nodes). Once the �le is stored, clients can request to the network
to retrieve or modify a data block Fi (or more), as well as to append (resp. delete) blocks to
(resp. from) the �le.

In this scenario, our goal is to formalize a cryptographic primitive that can provide clients
with the guarantee of integrity of the outsourced data and its modi�cations. The basic idea of
VDS is that: (i) the client retains a short digest �F that “uniquely” points to the �le F ; (ii) any
operation performed by the network, be it a retrieval or a �le modi�cation, can be proven by
generating a short certi�cate that is publicly veri�able given �F .

This problem is similar in scope to the one addressed by authenticated data structures (ADS)
[199]. But while ADS is centralized, VDS is not. In VDS nodes act as storage in a distributed
and uncoordinated fashion. This is more challenging as VDS needs to preserve some basic
properties of the DSN:
Highly Local. The �le is stored across multiple nodes and no node is required to hold the entire
F : in VDS every node should function with only its own local view of the system, which should
be much smaller than the whole F , e.g., logarithmic or constant in the size of F . Another
challenge is dynamic �les: in VDS both the digest and the local view must be locally updatable,
possibly with the help of a short and publicly veri�able update advice that can be generated by
the node who holds the modi�ed data blocks.
Decentralized Keyless Clients. In a decentralized system the notion of a client who outsources
the storage of a �le is blurry. It may for example be a set of mutually distrustful parties (even
the entire DSN in the most extreme case, e.g., the �le is a blockchain), or a collection of storage
nodes themselves that decide to make some data available to the network. This comes with two
implications:
1. VDS must work without any secret key on the clients side, so that everyone in the network
can delegate and verify storage. This keyless setting captures not only clients requiring no
coordination, but also a stronger security model. Here the attacker may control both the
storage node and the client, yet it must not be able to cheat when proving correctness of its
storage. The latter is crucial in DSNs with economic rewards to well-behaving storage nodes7.

2. In VDS a �le F exists as long as some storage nodes provide its storage and a pointer to the
�le is known to the network through its digest. When a �le F is modi�ed into F 0 and its digest
�F is updated into �F 0 , both versions of the �le may coexist. Forks are possible and it is left
to each client (or the application) to choose which digest to track: the old one, the new one, or
both.

Non-Coordinated Certi�cates Generation. There are multiple ways in which data retrieval
queries can be answered in a DSN. In some cases, e.g., IPFS, after executing a P2P protocol

7Since in a decentralized system a storage node may also be a client, an attacker could “delegate storage to itself”
and use the client’s secret key to cheat in the proof in order to steal rewards (akin to the so-called “generation attack”
in Filecoin [144]).
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to discover the storage nodes holding the desired data blocks, one gets such blocks from these
nodes. In other cases (e.g., Freenet [77] or the original Gnutella protocol), data retrieval is
also answered in a peer-to-peer non-coordinated fashion. When a query for blocks i1, . . . , im
propagates through the network, every storage node replies with the blocks that it owns and
these answers are aggregated and propagated in the network until they reach the client who
asked for them. Notably, data aggregation and propagation may follow different strategies.8 To
accommodate �exible aggregation strategies, in VDS we consider the incremental aggregation of
query certi�cates in an arbitrary and bandwidth-ef�cient fashion. For example, short certi�cates
for �le blocks Fi and Fj should be mergeable into a short certi�cate for (Fi, Fj) and this
aggregation process should be carried on and on. Noteworthy that having certi�cates that stay
short after each aggregation keeps the communication overhead of the VDS integrity mechanism
at a minimum.9

1.5.4 Inner Product Functional Commitments From Set Accumulators

We consider the problem of realizing functional commitments that admit constant-size public
parameters generated using a transparent public-coin setup. It is not hard to see that this question
has a positive answer if one is willing to rely on the random oracle heuristic. In this case, one
can build a functional commitment by using a succinct commitment scheme and a SNARK with
transparent setup [163, 6, 210, 25, 23, 75, 190, 191, 223] thanks to which one can generate an
opening through a SNARK proof for the NP statement that y = f(v) and the commitment C
opens to v. For an NP statement of size N , most existing SNARKs with a transparent setup
have proofs of length at least O(� logN), where � stands for the security parameter. The only
exception are SNARKs based on the approach of [163] instantiated with a constant-query PCP
and constant-size vector commitments over class groups [40, 145]. Such an approach however
involves the non-black-box use of the code of the commitment scheme and relies on the heavy
machinery of PCPs and SNARKs. Notably, this has to be the case even if one wants to construct
an FC for simple functionalities like inner products or polynomial evaluations (aka polynomial
commitments). In contrast, we ask whether we can build FC schemes for inner products in a
‘simple’ way, i.e., without relying on powerful (and computationally burdensome) primitives.

Indeed, when considering FCs for inner products or polynomial commitments, all ‘simple’
constructions in the literature have logarithmic opening size. For instance, an inner product
argument such as Bulletproofs [52] yields an FC for linear functions in which openings consist
of 2 · log n elements of a group G where the discrete logarithm problem is hard.
To summarize, to the best of our knowledge, there is no simple functional commitment

(including polynomial commitments) that admits constant-size and transparent public parameters
and constant-size openings in the literature. The only exceptions are a few vector commitment
constructions [40, 59] in groups of unknown order, which, however, are functional commitments
for the very speci�c, non-algebraic, functionality of position-opening. Therefore, the main
question we ask in this work is:

Can we build a simple inner-product functional commitments with constant-size
public parameters consisting of a uniformly random string and with constant-size
openings?

8E.g., in Freenet data is sent back along the same route the query came through, with the goal of providing
anonymity between who requests and who delivers data.

9The motivation of this property is similar to that of sequential aggregate signatures, see e.g., [157, 48].
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The main result of this part of the thesis is the construction of the �rst functional commitments
that answer the above question in the af�rmative.

1.5.5 Key-Value Maps from Any Vector Commitments

We present a construction that compiles any vector commitment into a key-valuemap commitment
(KVC) [40, 3] for arbitrary-size keys. Existing schemes are based on hidden-order groups [40, 3],
Merkle trees or, very recently, lattices [89].10 In Section 8.3, we present a generic and black-box
construction of (updatable) KVC obtained by combining any (updatable) VC and cuckoo hashing
[169], a probabilistic data structure. Through this generic construction, we obtain new ef�cient
KVCs; notably, the �rst updatable KVCs for large keys based on pairings.

Furthermore, we observe that KVCs (for large keys) imply accumulators (for large set-
universes). By putting this observation together with our VC-to-KVC compiler, we obtain a way
to convert VCs into accumulators. This connection was previously shown by Catalano and Fiore
in [66] but only for small set-universes. Our results thus bridge this gap. We close the circle
in showing the equivalence of VCs and universal accumulators, since the reversed implication
(i.e., building VCs from universal accumulators) has been recently shown by Boneh, Bunz and
Fisch [40]. An outstanding implication is that our result yields the �rst accumulator for large
universe based on the CDH problem in bilinear groups. Prior to our work, this result could only
be achieved by using non-black-box techniques (e.g., a Merkle tree with a CDH-based VC).

Cuckoo hashing applications. Cuckoo Hashing has been used extensively in many contexts
in cryptography, mainly to boost ef�ciency in oblivious two-party computations (e.g. in [177,
178, 7, 173]). However, in most of these contexts, due to the oblivious security model, the
adversary does not have direct access to the cuckoo hash functions. Only recently, a new work
has discussed cuckoo hashing in this perspective [219].

We propose a new cryptographic application where cuckoo hashes can be publicly computed.
In a way, our result show how vector commitment techniques can mitigate the shortcomings of
publicly computable cuckoo hashing, as combining them with vector commitments enable their
use while keeping constructions succinct and ef�cient. We believe that this approach can serve
as inspiration for future applications.

10One can also use polynomial commitments, e.g., [137], in combination with interpolation but to the best of our
knowledge this KVC is not updatable.
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2.1 Commitments schemes

Commitment schemes have a long history in Cryptography. The idea of committing through
cryptography appeared in the early 80s starting with the seminal work of Blum [37], in works
by Even [99] and Shamir, Rivest and Adleman [194]. The �rst work that formalized the notion
dates back to 1988 by Brassard, Chaum and Crépeau [46]. In 1991 Naor showed their connection
with Pseudorandom Generators [166].

Regarding concrete constructions, the most popular commitment schemes in the discrete-
logarithm setting are Elgamal [97] and Pedersen [174] commitments. Elgamal commitment
scheme is perfectly binding and computationally hiding. Pedersen commitments are perfectly
hiding and computationally binding, therefore they are compressing (Succinct). One can also
obtain a commitment scheme from the RSA assumption [184]. The same scheme can be
generalized to work over any group of unknown order [111, 85]. Latticed-based commitment
schemes include the one obtained from the Ajtai function [4] and the BDLOP commitment [20]
(that in turn improved on [33]). Finally, a commitments schemes can be generically obtained
by any collision-resistant hash function, where hiding holds if it is modeled as a random oracle
[21].

2.2 Vector Commitments

Here, we brie�y survey the developments in the area of vector (and functional) commitments.
In this section we mostly refer to ‘algebraic’ schemes, that do not make use of more powerful
tools such as SNARKs. We discuss the latter in Section 2.6.

The �rst vector commitment construction �rst appeared in a paper by Libert and Yung [150],
providing a construction from bilinear groups. Catalano and Fiore [66] formally de�ned the
primitive and showed realizations from the RSA and Computational Dif�e-Hellman assumptions.
We note that Merkle trees [162] can serve as a vector commitments although initially not seen
as such. Papamanthou et al. [171] and Libert et al. [148] gave lattice-based constructions
based on the Merkle-tree paradigm. A generalization of Merkle trees are Verkle trees, formally
appearing in [143] (though the core techinque was already present in [67, 150]). A Verkle-tree

21



CHAPTER 2. RELATED WORK

is essentially a Merkle tree with larger arity, where instead of a 2-to-1 hash function an n-to-1
vector commitment is used.

More recently the �eld of algebraic VCs exploded. In 2018 Chepurnoy et al. [73] showed a
pairing-based construction using multi-linear extension polynomials [227]. Lai and Malavolta
[145] and Boneh et al. [40] introduced the notion of vector commitments with subvector
openings,11 where one can open a commitment in multiple positions with a single (succinct)
proof. The former work presented constructions from pairings and groups of unknown order
(extending the constructions of [66]) and the latter from groups of unknown order (using RSA
accumulators [29, 18]). Tomescu et al. [202] also introduced a pairing-based vector commitment
using the KZG polynomial commitment [137] and Lagrange interpolation. Gorbunov et al.
[123] put forth the notion of cross-commitment aggregation, where one can provide a single
(succinct) opening proof for multiple committed vectors, and provided a construction from
pairings using the [150] VC. Tomescu et. al. [203] extended the notion to cross-incremental
commitment (dis)aggregation that admits both incremental aggregation (see Section 1.5.3)
and cross-commitment aggregation, providing a construction from groups of unknown order.
Srinivasan et. al. [197] showed a pairing-based tree-construction that provides trade-offs
between proof size and proof-update time, formalizing this as Maintainable VCs. Campanelli et
al. [62] constructed another pairing-based tree-construction that is Maintainable, and additionally
showed a restricted form of incremental aggregation from pairings that does not though support
disaggregation and is not aggregation-history oblivious. Another construction on the same spirit
came later by Liu et al. [156]. Furthermore, Wang et al. [213] showed generic techniques
for VCs to achieve Maintainability. Peikert et al. showed the �rst algebraic lattice-based VC
construction [176]. More lattice-based VC constructions came very recently by Albrecht et al.
[5], de Castro and Peikert [89] and Wee and Wu [214].

Functional Commitments. Funcional Comitments were introduced By Libert et al. on 2016
[149], where they also provided a construction for linear function-openings from bilinear groups.
Until recently this was the only (algebraic) construction of FCs known. On 2020, Lipmaa and
Pavlyk [154] demonstrated techniques to overcome the linearity barrier, giving pairing based FC
constructions for a larger class of functions, namely for the class of semi-sparse polynomials. On
2021, Peikert et al. [176] showed a lattice-based FC for all functions, however in a weaker model
where a trusted party should stay online providing helping information on-the-�y for the opening-
functions of interest. Arun et al. [8] proposed a functional commitment construction for inner
products with transparent setup and constant-size openings. On 2022, three independent works
appeared concurrently [89, 214, 15] showing construction of FCs for all (NP) functions. Balbás
et al. [15] provided constructions from Pairings and Lattices using the notion of ‘chainable’
functional commitments. De Castro and Peikert [89] gave lattice-based schemes using Fully
Homomorphic Encryption techniques [117], however the opening proofs are not succinct on
the size of the vector but on the size of the function representation. Finally, Wee and Wu [214]
also used Fully Homomorphic Encryption techniques [117] to construct lattice-based FCs for all
functions with fully-succinct openings, introducing a new class of lattice assumptions.

Functional Commitments for linear functions can also be realized through folding-techniques
that build inner-product arguments [44, 52].

Applications. There are numerous possible applications of vector commitments, here we
mention the most prominent examples in the literature. [66] discussed applications of VCs to

11In [40] dubbed as vector commitments with ‘batching’.
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Veri�able Databases. [171] constructed VCs for Streaming Authenticated Data Structures. [73],
[40], [202] and [123] discussed the use of Vector Commitments in Stateless Blockchains.
On the cryptographic side, already in 1994 Micali [163] showed applications of Merkle

trees to succinct non-interactive proofs of knowledge. [145] and [40] elaborated on this idea,
demonstrating that subvector VCs can produce (zk) proofs with smaller size. [5] also constructed
lattice-based SNARKs based on FCs. [8] showed extensions and applications of their FC
scheme to building constant-size SNARKs with transparent setup. [15] and [68] of FCs to
homomorphic signatures [134, 42]. Finally, [105] shows applications of VCs to proofs of space
and proofs/retrievability.

2.3 Polynomial Commitments

Polynomial commitments were introduced in [137], where a pairing-based construction with
constant-sized openings was also presented. Vlasov and Panarin [209] (further studied in [27])
built a polynomial commitment scheme from Merkle trees and Interactive Oracle Proofs of
Proximity, in concrete the FRI protocol, [22].

Furthermore, we note that polynomial commitments are implied by functional commitments,
therefore all the aforementioned FC schemes imply a PC scheme.

2.4 Key-Value Map Commitments

The notion Key-Value Map Commitments was introduced by Boneh et al. [40] where they
also presented a construction from Groups of Unknown order. Different KVC constructions
from Groups of Unknown order exist [3, 203]. Recently deCastro and Peikert [89] showed a
construction from Lattices.
KVCs are implied by any sparse vector commitment as Merkle Trees. In [73] a generic

construction from VCs and hash function was shown and in [40] a generic construction from
Accumulators and hash functions. Both compilers though give KVCs with a weaker security
property, where we need to make sure that the commitments was honestly generated for the
scheme to be secure.

2.5 Set Membership protocols

Accumulators. Accumulators were introduced by Benaloh and de Mare [29]. Constructions
for large universe exist from RSA groups [18, 57], Groups of Unknown Order [152, 40], q-type
assumptions in bilinear groups [167, 56], and Merkle trees. The recent work of de Castro and
Peikert [89] also implies an accumulator from lattices.

Privacy-preserving Accumulators. Different notions of privacy for accumulators have been
proposed in the literature. Derler et al. [91] formalized the notion of indistinguishability for
accumulators, where the digest of the set should leak no information about the set to a veri�er.
Ghosh et al. [119] strenghtened the notion, introducing ‘zero-knowledge accumulators’, where
even after updates the digest and the (non)-membership proofs preserve the privacy of the set.
Later [228, 136, 72] built on this model. Finally, very recently, Baldimtsi et al. [16] introduced

23



CHAPTER 2. RELATED WORK

the notion of ‘Oblivious Accumulators’, enhancing the above, preserving the privacy even to
parties that actively participate in the system (and hold (non-)membership proofs). We note that
in all these the (non-)membership proof itself leaks the element that is proving (non-)membership;
the objective is to preserve the privacy of the rest of the elements of the set.

Regarding anonymous set membership the �rst construction appears in [57] where the authors
provide a zero-knowledge protocol for set membership for RSA accumulators. More recently, in
the bilinear groups setting, Srinivasan et al. [198], among other improvements on the functional-
ities and security properties of the actual pairing-based accumulator, provide zero-knowledge
(batch) proofs for membership and non-membership over the Nguyen accumulator [167]. An-
other relevant, rapidly developing, line of work has to do with succinct zero-knowledge lookup
arguments. That is, given a committed vector of n elements, one proves that a number m of
committed elements are all values of the vector in some hidden position, while retaining the
elements secret. The proofs are succinct in both n and m. This line of work was initiated by
the seminal work of Zapico et al. [221] followed by a number of works improving the prover’s
complexity [182, 112, 222, 96]. All these constructions work over bilinear groups. Finally,
Lipmaa and Parisella [153] (building on [80] and [79]) construct succinct set (non-)membership
NIZKs from falsifaible assumptions. That is, the objective of their work is constructing ef�cient
NIZKs for set (non-)membership that can be proven secure in the standard model and assuming
only falsi�able assumptions.

Succinct Set mebership proofs. Ozdemir et al. [168] recently proposed a solution to scale
operations on RSA accumulators inside a SNARK. In particular, their approach scales when
these operations are batched (i.e., when proving membership of many elements at the same
time); for example, they surpass a 220-large Merkle tree when proving batches of at least 600
elements. This approach is attractive in settings where we can delegate a large quantity of these
checks to an untrusted server as there is a high constant proving cost. Their solution is not
zero-knowledge and does not provide privacy guarantees.
In the lattice-based setting Lyubashevsky et al. [158] in 2021 presented zero-knowledge

proofs for set membership from (ideal) lattices. The proofs are post-quantum, however with
linear (in the size of the set) veri�cation and, as typical in the lattice-based cryptography, the
concrete proof size is still bigger than the one in classical settings.

2.6 (zk)-SNARKs

zkSNARKs [163, 36] is one of the most rapidly developed areas in Cryptography during the last
decade. There exist different categorizations for example according to the setup assumptions:
relation-speci�c-setup SNARKs e.g. [114, 172, 126], universal SNARKs e.g. [127, 159, 113,
74, 58, 183, 155, 71] or SNARKs with transparent setup [163, 6, 210, 25, 23, 75, 190, 191, 223].
The most widely deployed SNARKs are Groth16, Plonk and STARKs [126, 113, 22].

As noted in Section 1.5, SNARKs are very powerful tools with which one can generically
provide solutions to all the aforementioned problems. With a succinct plain commitment scheme
and a (zk)SNARK one can construct: a vector/polynomial/key-value map commitment and
in general functional commitments for all functions and succinct privacy-preserving set (non-
)membership proofs. However, as also argued in Section 1.5, this comes at high proving-cost,
since, that way, one has to decompose cryptographic operations, encode them in arithmetic
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circuits and then prove them. Another, obstacle is that SNARKs are typically non-malleable
meaning that any updatability property becomes infeasible.

2.7 Other Related Work

Cuckoo hashing in cryptography. Cuckoo hashing has been used in Cryptography in oblivous
access primitives such as Oblivious RAM [177], Private Set Intersection [178], Private Infomra-
tion Retrieval [7], and Searchable Encryption [173]. Recently, Yeo gave a formal treatment from
a cryptographic perspective [219], again with the objective of discussing applications to PIR.

ZKP-batch Veri�able computation with state. Veri�able computation and zkSNARKs have
a vast literature; a complete coverage goes beyond the scope of this paper, e.g., see this recent
survey [211] and references therein. More relevant to our work are some works that address the
problem of veri�able computation (or zkSNARKs) with respect to succinct digests. Pantry [47]
use Merkle trees to model RAM computations. Fiore et al. [103] propose hash&prove as well
as accumulate&prove protocols that avoid expensive hash encodings in the circuit, but their
solutions require the SNARK prover to do work linear in the hashed/accumulated set, which
limits their scalability to large sets. The same limitation applies to the ef�cient commit-and-
prove SNARKs [78, 61] as well as to the vSQL scheme of Zhang et al. [225] and TRUESET by
Kosba et al. [141]. Also, all these schemes [103, 61, 225] require public parameters linear in the
largest set. ADSNARK [14] can generate proofs on authenticated data; this setting is similar to
accumulated sets except that inserting data in the set requires a secret authentication key; proofs
in [14] are succinct only when veri�ers know the secret authentication key.
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3
BACKGROUND

In this chapter we present some basic notions and results of Cryptography that we build on in
this thesis. Most of the results presented in this chapter are based on prior, to this thesis, works.
We include them in order to ease the presentation of our technical contributions and to serve the
self-containedness of the thesis.

3.1 Basic Mathematics and Notation

To begin with, we recall some relevant basic mathematical concepts and notation.
Throughout the thesis, we denote the security parameter with a natural number � 2 N and

its unary representation with 1� and we assume that all the algorithms of the cryptographic
schemes take as input 1�, which may be omitted from the list of inputs. The security parameter
indicates the level of security of the cryptographic schemes: security parameter � means that
one needs ⇥(2�) computational power to break the scheme.

The set of all univariate polynomial functions, with formal variable �, is denoted by poly(�).
Similarly polylog(�) is the set of poly-logarithmic functions in �, for example 3.1 log7(�) or
log3(�) + 100 log(�). A function ✏(�) is called negligible – denoted ✏(�) 2 negl(�) – if it
vanishes faster than the inverse of any polynomial, that is ✏(�) < 1/f(�) for every f 2 poly(�).
Sometimes we will abuse the notation and write  = poly(�) or  = negl(�) with ‘=’ instead
of ‘2’. By O�(n) will mean O(�n) (and not O(poly(�)n)).

IfD is a distribution, we denote by x D the process of sampling x according toD. More
usually, if S is a set, we denote we denote by x $S the process of sampling x uniformly at
random fromS (in other words this is the uniform distribution with domainS). An ensembleD =
{D�}�2N is a family of probability distributions over a family of domains S = {S�}�2N, and
we say that two ensemblesD = {D�}�2N andD0 = {D0

�}�2N are statistically indistinguishable
(denoted by D ⇡s D0) if 1

2

P
x |D�(x) � D0

�(x)| < negl(�). If A = {A�} is a (possibly
non-uniform) family of circuits and D = {D�}�2N is an ensemble, then we denote by A(X )
the ensemble of the outputs of A�(x) when x  X�. We say two ensembles D = {D�}�2N
and D0 = {D0

�}�2N are computationally indistinguishable (denoted by D ⇡c D0) if for every
non-uniform polynomial time distinguisher A we have A(D) ⇡s A(D0).
An algorithm A is said PPT if it is modeled as a probabilistic Turing machine that runs in

time T = poly(�). We denote by y  A(x) the process of running A on input x and assigning
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the output to y. For the rest of the thesis byAwe will denote the ‘adversary’ of the cryptographic
schemes.

We use bold lowercase letters to denote a vector, e.g. v = (v1, . . . , vn), where vi is its entry
at position i. Sometimes we also write (vj)j2[n] (or even (vj)j when there is no ambiguity for
the set [n]) for the vector v = (v1, . . . , vn). Given vectors v1, . . . ,vm, cat((v1, . . . ,vm)) will
be the vector of concatenated vectors v1k . . . kvm. For any positive integer n 2 N, we write
[n] for {1, . . . , n} and for any positive integers A,B 2 Z, A < B we write [A,B] for the set
{A,A + 1, . . . , B � 1, B}. For a set S, |S| denotes its cardinality. The operator k · k is used
for the bit-size, i.e. kxk = dlog(x)e, for x 2 N, which intuitively denotes the number of bits
needed to represent x.
We denote P := {e 2 N : p is prime} the set of all positive integers p > 1 such that

they do not have non-trivial (i.e. different than e and 1) factors. More speci�cally, given two
positive integers A,B > 0 such that A < B, we denote with P[A,B] the subset of P of
numbers lying in the interval [A,B], i.e., P[A,B] = {p 2 N : e is prime ^ A  p  B}.
According to the well known prime number theorem |P[1, B]| = ⇥( B

logB ) which results to
|P[A,B]| = ⇥( B

logB )�⇥( A
logA). Furthemore, we write P(�) for the set of all primes of bit-size

�, i.e. P(�) = {p : p prime ^ kpk = �} = {p : p prime ^ 2��1 < p < 2�}.

3.2 Bilinear Groups

Some of our cryptographic constructions in the subsequent chapters work over Bilinear (aka
Pairing) Groups of prime order.
Formally, a Bilinear Group generator algorithm BG takes as input a security parameter 1�

and outputs a description bg := (p,G1,G2,GT , g1, g2, e), where p is a prime of ⇥(�) bits, G1,
G2 and GT are cyclic groups of order p, and e : G1 ⇥G2 ! GT is a non-degenerate bilinear
map. We require that the group operations in G1, G2, GT and the bilinear map e are computable
in deterministic polynomial time in �. Let g1 2 G1, g2 2 G2 and gT = e(g1, g2) 2 GT be the
respective generators.

3.3 Groups of Unknown Order

For some our constructions we use groups of unknown (aka hidden) order G, i.e., groups
where computing the order is hard. We let Ggen(1�) be an ef�cient probabilistic algorithm
that generates such a group G with order in a speci�c range [minord(G),maxord(G)] such that

1
minord(G) ,

1
maxord(G) ,

1
maxord(G)�minord(G) 2 negl(�). Potential candidates are class groups of

imaginary quadratic order [49] and RSA groups [184] where the factorization is unknown. The
instantiation through class groups is the one that admits a public-coin (aka transparent) setup.

For the most part of our constructions we make black-box use of the groups, their properties
and the relevant computational assumptions, without going into the concrete instantiation or
implementation of the group.

3.3.1 Hardness Assumptions

Now we recall some assumption that are commonly believed to be true in (carefully chosen)
groups of unknown order. By “hardness assumption” in Cryptography (and in Complexity
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Theory) we mean that a computational problem is believed not to admit a PPT algorithm. An
example is the Factoring assumption, that the problem of Factoring a large integer is assumed to
be hard. Typically, the hardness assumptions come with strong evidence from Cryptanalysis,
that intense cryptanalysis’ efforts have failed to solve the problem in polynomial time.
In particular, we (partially) base some of our constructions in one or more of the assump-

tions that are formally de�ned below. The 2-Strong RSA assumption [53], the Adaptive Root
assumption [215], the Low Order assumption [39] and the Strong Distinct-Prime-Product Root
assumption [145].

De�nition 1 (2-Strong RSA assumption [53]). We say that the 2-strong RSA assumption holds
for Ggen if for any PPT adversary A:

Pr

2

64
ue = g

^e 6= 2k, k 2 N
:

G Ggen(�)

g $G
(u, e) A(G, g)

3

75 = negl(�)

The 2-Strong RSA assumption is a special case of r-Strong RSA assumption, introduced
in [53]. The latter is in turn a generalization of (and trivially reduces to) the standard Strong RSA
assumption [18] (where r = 1). Taking square roots can be done ef�ciently in Class Groups of
imaginary quadratic order [45], but for higher order roots it is believed to be hard. Thus 2-Strong
RSA assumption is believed to hold. For RSA groups the (plain) Strong RSA is a standard
assumption.

De�nition 2 (Adaptive Root assumption [215]). We say that the adaptive root assumption holds
for Ggen if for any PPT adversary (A1,A2):

Pr

2

6664
u` = w

^w 6= 1
:

G Ggen(�)

(w, state) A1(G)

` $Primes(�)

u A2(`, state)

3

7775
= negl(�)

De�nition 3 (Low Order assumption [39]). We say that the low order assumption holds for
Ggen if for any PPT adversary A:

Pr

2

64
u` = 1

^u 6= 1

^1 < ` < 2poly
:
G Ggen(�)

(u, `) A(G)

3

75 = negl(�)

Firstly, we note that the Low Order Assumption holds unconditionally in RSA groups.
Secondly, the Low Order Assumption is implied by the more commonly known Adaptive Root
assumption, which is de�ned below. For the reduction we refer to [39]. We also notice that the
de�nition of the Low Order assumption given in [39] is for smaller `, 1 < ` < 2�, which was
suf�cient for the application in the paper, whereas ours is for any polynomial-size `. We note
that the same reduction to the Adaptive Root assumption described in [39] also holds for our
de�nition of the problem.
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De�nition 4 (Strong Distinct-Prime-Product Root assumption [145]). We say that the Strong
Distinct-Prime-Product Root assumption holds for Ggen if for any PPT adversary A:

Pr

2

64
u
Q

i2S ei = g

^8i ei 2 Primes(�)

^8i 6= j, ei 6= ej

:

G Ggen(�)

g $G
(u, {ei}i2S) A(G, g)

3

75 = negl(�)

The assumption is implied by the strong RSA assumption over RSA groups.

3.3.2 Concrete Instantiations of Groups of Unknown Order

Two concrete instantiations of a group, G, of hidden order are RSA groups [184] and class
groups [49]. We brie�y discuss these instantiations below.

3.3.2.1 RSA groups

We say thatN = pq is an RSA modulus for some primes p, q, such that |p| = |q|. We further say
thatN is a strong RSA modulus if there are primes p0, q0 such that p = 2p0+1, q = 2q0+1. We
call Z⇤

N an RSA group, corresponding to an RSA modulus N . With � : N! N we denote the
Euler’s totient function, �(N) := |Z⇤

N |. In particular for RSA modulus �(N) = (p� 1)(q � 1).
An RSA Group generator N  $GenSRSAmod(1�) is a probabilistic algorithm that outputs a
strong RSA modulus N of bit-length `(�) for an appropriate polynomial `(·).

For anyN we denote by QRN := {Y : 9X 2 Z⇤
N such that Y = X2 (mod N)}, the set of

all the quadratic residues modulo N . QRN is a subgroup (and thus closed under multiplication)
of Z⇤

N with order |QRN | = |Z⇤
N |/2. In particular for a strong RSA modulus |QRN | = 4p0q0

2 =
2p0q0.

3.3.2.2 Computational Assumptions in RSA Groups.

The most fundamental assumption for RSA groups is the factoring assumption which states that
given an RSA modulus N  GenSRSAmod(1�) it is hard to compute its factors p and q. We
further recall the Discrete Logarithm and strong RSA [18] assumptions:

De�nition 5 (DLOG Assumption for RSA groups). We say that the Discrete Logarithm (DLOG)
assumption holds for GenSRSAmod if for any PPT adversary A:

Pr

2

6664G
x0

= Y (mod N) :

N  GenSRSAmod(1�)

G $Z⇤
N ;x $Z

Y  Gx (mod N)

x0  A(Z⇤
N , G, Y )

3

7775
= negl(�)

De�nition 6 (Strong-RSA Assumption [18]). We say that the strong RSA assumption holds for
GenSRSAmod if for any PPT adversary A:

Pr

2

64
U e = G

^e 6= 1,�1
:

N  GenSRSAmod(1�)

G $Z⇤
N

(U, e) A(Z⇤
N , G)

3

75 = negl(�)
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If we desire the Adaptive Root Assumption (and the Low-Order Assumption that is implied
from it) to hold we have to take a variant of the RSA group, the quotient group Z⇤

N/{1,�1} of
an RSA group [215]. The reason why we cannot directly use the RSA group is that the order of
�1 2 Z⇤

N is known, and thus the adaptive root assumption does not hold. In the quotient group,
{�1, 1} is the identity element; hence, knowing the order of �1 does not help in �nding a root
for a non-identity element and thus solving the adaptive root assumption.

3.3.2.3 Class Groups

Class groups of imaginary quadratic order were introduced in Cryptography by Buchmann and
Williams on 1988 [50]. Class groups are groups of advanced algebraic structures. In general,
a class group G = Cl(�) of an imaginary quadratic order is the quotient group of fractional
ideals by principal ideals of the group Q(

p
�) with ideal multiplication. It is de�ned by its

discriminant � which must satisfy � = 1 (mod 4) and �� must be a prime. Note that the�
can be generated from public coins for a given security parameters �.

In this thesis we treat Class Groups as black-box objects that instantiate Groups of Unknown
oreder, without making use of their concrete representation. The properties that we assume that
hold are the aforementioned of Groups of Unknown Order. For a Survey on Cryptography and
Class Groups we refer to [49]

3.3.2.4 Other candidates

Recently Dobson et al. [94] initiated the study of another candidate category of groups where it
is conjectured that computing the order is computationally hard, that can be used to instatiate
cryptographic scheme over groups of unknown order. They are based on Jacobian of Hyperelliptic
curves. The proposal is acknowledged by the authors as currently speculative and cannot yet be
considered mature to instantiate cryptographic schemes.

3.3.3 Shamir’s Trick

Here we recall a Shamir’s trick [192], an algorithm over elemets of groups of unknown order
that we will extensively use in subsequent chapters of the thesis.
Informally speaking, Shamir’s trick is a way to compute an xy-root of a group element g

given an x-root and a y-root of it in groups of unknown order, when x and y are co-prime. That
is, given ⇢x = g

1
x , ⇢y = g

1
y , x and y, one can compute a, b st ax+ by = 1 using the extended

gcd algorithm. Then g
1
xy = g

ax+by
xy = g

a
y+

b
x = ⇢ay · ⇢bx. More formally, we recall the following

algorithm:

ShamirTrick(⇢x, ⇢y, x, y)

if ⇢xx 6= ⇢yy then return ?
Use the extended Euclidean Algorithm to compute a, b, d s.t. ax+ by = d = gcd(x, y)

if d 6= 1 then return ?
return ⇢bx⇢

a
y

This technique is remarkable because normally computing a root g
1
xy (without having

g1/x, g1/y) is considered a hard problem (see Section 3.3.1).
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3.3.4 Generic Group Model for Groups of Unknown Order

The Generic Group Model (GGM) [196, 160] is a model that restricts the power of the adversary.
In particular, a ‘generic’ adversary does not have concrete representations of the elements of the
group, and can only use generic group operations, as group additions and inversions. GGM was
extended to groups of unknown order by Damgard and Koprowski [87].

This model captures the possible ‘algebraic’ attacks that an adversary can perform. Security
of a cryptorgaphic primitive in the GGM can be seen as the minimum reassurance we can get.
Notably, in many cryptographic settings, as for example in some bilinear group and hidden order
group instantiations, there is no clear way to maliciously exploit the group representation and
generic attacks are the best currently known technique to attack a scheme.

3.4 Commitments

Here we provide a brief background on (plain) cryptographic commitment schemes.
Commitment schemes allow one to commit to a value, or a collection of values (e.g., a

vector), in a way that is binding—a commitment cannot be opened to two different values—and
hiding—a commitment leaks nothing about the value it opens to. In our work we also consider
commitment schemes that are succinct, meaning informally that the commitment size is �xed
and shorter than the committed value.

3.4.1 Commitments to singletons

Here is a brief description of the syntax we use in our work: Setup(1�) ! ck returns a
commitment key ck; Commit(ck, x; o)! c produces a commitment c on input a value x and
randomness o (which is also the opening).

3.4.1.1 Pedersen Commitments

Pedersen Commitment [174] is undeniably the most popular commitment scheme. It works over
groups of prime order, for example–but not necessarily–bilinear groups. The setup outputs the
group representation and two generators, Setup(1�)! ck = (G, g, h). Then the commitment
is Commit(ck, x; o) ! c = gxhr, where r $Zp is a freshly sampled randomness. Both the
committed message and the randomness should be elements of Zp. For the opening the veri�er
is provided with x and r and simply checks if c = gxhr holds.

We note that Pedersen Commitment can generalize to commit to multiple values, x1, x2, . . . ,
xn 2 Zp, in a similar manner c = gx1

1 gx2
2 . . . gxn

n hr, where g1, g2, . . . , gn are distinct random
generators.

3.4.1.2 Pedersen Commitments of Integer values

A straightforwrd variant of this scheme is for committing to integers (instead of �eld elements);
we describe it in Figure 3.1. Since we commit to an integer xwhose size is potentially larger than
the order of the group, p, we split the integer into several “chunks”, of size ChkSz  p speci�ed
in the parameters, and then we apply the standard vector-Pedersen on this split representation. We
let the setup algorithm take as input a bound B denoting the max integer that we can commit to.
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The construction is perfectly hiding, and computationally binding under the discrete logarithm
assumption.

Setup(1�,B 2 N,ChkSz 2 N, n 2 N) :

(Gp, f) GGenp(1
�); If ChkSz > p then output ?

Let N := n ·
⇠

B

ChkSz

⇡

Sample g1, . . . , gN , h $Gp

return ck := (G,B,ChkSz, n, g1, . . . , gN , h)

Commit(ck,x 2 Zn; r 2 Zp) :

If 9i : xi > B then output ?

Let
⇣
x
(i)
1 , . . . , x

(i)
m

⌘
be the representation of xi in base ChkSz for i 2 [n]

y :=
⇣
x
(1)
1 , . . . , x

(1)
m , . . . , x

(n)
1 , . . . , x

(n)
m

⌘

return h
r

NY

i=1

g
yi
i

Figure 3.1: Pedersen Commitment for integer values

3.5 Set Commiments - Accumulators

Cryptographic Accumulators [29, 18] are primitives that allow one to commit to a set S =
{x1, . . . , xn} that they can later provide a short proofW of membership for any element on
the set. They can be seen as commitments to set with a �ne-grained opening that allows for
membership tests.

3.5.1 Accumulators De�nitions

Below is the de�nition of Accumulators, following the de�nition of [100]. In this thesis we are
only concerned with public key accumulators, meaning that after the key generation phase no
party has access to the secret key.

De�nition 7 (Accumulators). A static (non-Universal) Accumulator with domain X is a tuple
of four algorithms, (Gen,Eval,Witness,VerWit)

• Setup(1�, t)! pp : is a (probabilistic) algorithm that takes the security parameter � and a
parameter t for the upper bound of the number of elements to be accumulated. If t =1 there
is no upper bound. Returns some public parameters pp.

• Accum(pp, S)! acc : takes the public parameters and a set S and in case S ✓ X outputs
the accumulated value acc and some auxiliary information aux. If S * X outputs ?.

• WitGen(p, x, S)!W : takes the public parameters pp, the value x and the set S and outputs
either a witnessW of x 2 S or ? if x /2 S.

• Ver(pp, acc, x, w)! b : takes the public parameters pp, the accumulation value acc, a value
x and a witness w and outputs 1 ifW is a witness of x 2 S and 0 otherwise.
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Further, we give the de�nition of Dynamic Accumulators, a notion that was introduced by
Camenisch and Lysyanskaya [57]. Dynamic Accumulators are Accumulators that additionally
provide the ability to update the accumulated value and the witnesses when the set is updated,
either on addition of a new element or on deletion.

De�nition 8 (Dynamic Accumulators). A Dynamic Accumulator with domain X is a static
Accumulator that additionally provides three algorithms (Add,Delete,WitUpdate).

• Add(pp, acc, y, S)! (acc0, S0) : takes the public parameters pp, the accumulated value acc,
the value to be added to the set y and the set S. If y /2 S^y 2 X outputs the new accumulation
value acc0 for the corresponding new set S0 = S [ {y} and the new set S0. In case y 2 S or
y /2 X outputs ?.

• Del(pp, acc, y, S)! (acc0, S0) : takes the public parameters pp, the accumulated value acc,
the value to be deleted from the set y and the set S. If y 2 S ^ y 2 X outputs the new
accumulation value acc0 for the corresponding new set S0 = S \ {y} and the new set S0. In
case y /2 X or y /2 X outputs ?.

• WitUpdate(pp,W, y, S)!W 0 : takes the public parameters pp, a witnessW to be updated,
the value y that was either added or deleted from S and the set S. In case x 2 S0 outputs the
updated witnessW 0, otherwise outputs ?.

Typically, it is required that update algorithms, Add and Del are more ef�cient than recom-
puting the accumulation value from scratch with Accum.

Correctness. For every t = poly(�) and |S|  t:

Pr

2

64
pp Setup(1�, t);

acc Accum(pp, S);

W  WitGen(pp, S, x)

: Ver(pp, acc, x, S)

3

75 = 1

Soundness. A cryptographic accumulator is sound if for all t = poly(�) and for all PPT
adversaries A there is a negligible function negl(·) such that:

Pr

2

64
pp Setup(1�, t);

(y⇤,W ⇤, S⇤) A(1�, pp);

acc⇤  Accum(pp, S⇤)

: Ver(pp, acc⇤, y⇤,W ⇤) = 1 ^ y⇤ 2 S⇤

3

75  negl(�)

Succinctness Furthermore we require that both acc andW are short (polylog(n)) in the size of
the set |S| := n and that veri�cation takes time polylog(n).

3.5.2 Dynamic RSA Accumulators

Below we give the formal description of Dynamic Strong RSA Accumulators [29, 18, 57]. In
Section 4.4.1 they are informally recalled.
The domain of RSA accumulators is X = P.

• Setup(1�,1) ! pp : samples an RSA modulus (N, (q1, q2))  GenSRSAmod(1�) and a
random group element F  $Z⇤

N and computes a quadratic residue G F 2 (mod N).
Return pp (N,G)
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• Accum(pp, S) ! (acc, S) : parses pp := (N,G). If S * P return ?, otherwise computes
prodS :=

Q
xi2X xi and

Return (acc, S) (GprodX mod N,S)

• WitGen(ek, x, aux)!W parses pp := (N,G) and computes prodS\{x} :=
Q

xi2X\{x} xi

ReturnW  GprodX\{x} mod N

• Ver(pp, acc, x,W ! b parses pp := (N,G)

Return b (W x = acc (mod N))

3.5.2.1 Security of strong RSA Accumulator and Batch-Veri�cation

Security of the above Accumulator comes directly from the strong RSA assumption [18]. What
is more interesting is that the same scheme allows for many memberships to be veri�ed at the
same time, what is called batch-veri�cation. That is, given x1, . . . , xm ✓ P one can compute a
batch-witnessW = GprodS\{x1,...,xm} and the veri�cation will be b (W x1...xm = acc). Again
the security of the batch-veri�cation comes from strong RSA assumption and it allows us argue
that for anyW,x ifW x = acc := GprodS then x 2 prodS , meaning that x is a product of primes
of the set S.

3.5.2.2 RSA Accumulators for general Groups of Unkown Order

We note that RSA accumulators work generically over any Group of Unknown Order where the
2-strong RSA Assumption holds [151, 40]. In Figure 3.2 we summarize the RSA accumulator’s
description over a Groups of Unknown Order G. We include the batching property in the
algorithms’ description.

Setup(1�,1) :

(G, g) GGen(1�)

return pp := (G, g)

Accum(pp, S) :

prod 
Y

x2S

x

return acc := g
prod

Add(pp, acc, S0) :

prod
0  

Y
x 2 S

0
x

return acc
0 := acc

prod0

WitGen(pp, S,X) :

prod 
Y

x2S

x, prodX  
Y

x2X

x

return W := g
prod/prodX

Ver(pp, acc, X,W ) :

prdX  
Y

x2X

x

Accept iffW prodX = acc

Figure 3.2: The RSA Accumulator over groups of unknown order.

3.6 Vector Commitments

A Vector commitment (henceforth VC) scheme [150, 66] is a cryptgraphic primitive that allows
a party to compute a commitment to a large vector v of ordered elements and later to locally
open a speci�c position vi. A VC guarantees that it is hard to open a commitment to two
distinct values at the same position – what is called “position binding”. The non-triviality of
VCs that distinguishes them from plain commitments(Section 3.4) is that they have short (i.e.,
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polylogarithmic in the size of the vector |v|) commitment and openings-size. We call the latter
property “Succinctness”.

3.6.1 Vector Commitments

First we recall the basic Vector Commitment syntax and properties [150, 66].

De�nition 9 (Vector Commitment [66]). A Vector Commitment (VC) scheme VC = (Setup,
Com, Open, Ver) consists of the following algorithms:

• Setup(1�, n)! crs : on input the security parameter � and an integer n expressing the length
of the vectors to be committed, returns the common reference string crs.

• Com(crs,v)! (C, aux) : on input a common reference string crs and a vector v, returns a
commitment C.

• Open(crs, aux, i)! ⇤ : on input an auxiliary information as produced by Com and a position
i 2 [n], returns an opening proof ⇤.

• Ver(crs, C,⇤, i, v)! b : on input a commitment C, returns a bit b 2 {0; 1} to check whether
⇤ is a valid opening of C to v at position i.

Correctness. VC is perfectly correct if for any vector v:

Pr


Ver(crs, C,Open(crs, aux, i), i, vi)) = 1 :

crs Setup(1�, n)
(C, aux) Com(crs,v)

�
= 1

Position binding. VC satis�es position binding if for any PPT A

Pr

2

4
Ver(crs, C,⇤, i, v)) = 1
^Ver(crs, C,⇤, i, v0)) = 1

^ v 6= v0
:

crs Setup(1�, n)
(C, i, v,⇤, v0,⇤0) A(crs)

3

5 = negl(�)

Succinctness. VC is succinct if for any crs $ Setup(1�, n), any vector v, any (C, aux)  
Com(crs,v), any i 2 [n] and ⇤ Open(crs, aux, i), the bitsize of C and ⇤ is polylogarithmic
in n, i.e., is bounded by a �xed polynomial p(�, log n).

Wewill also use the notion of updatable vector commitments [66], which informally provides
the functionality that, given a commitment C and opening ⇤ corresponding to a vector v, one
can update them into values C 0 and ⇤0 corresponding to a vector v0. Notably, this update should
be ef�cient, i.e., in time proportional to the number of different positions in v and v0, and thus
faster than recomputing them from scratch. More formally:

De�nition 10 (Updatable VCs [66]). A vector commitment scheme VC is updatable if there are
two algorithms (ComUpdate,ProofUpdate) such that:

• ComUpdate(crs, C, i, v, v0)! C 0 : on input a commitment C, a position i and two values v,
v0, outputs an updated commitment C 0.

• ProofUpdate(crs,⇤, i, v, v0) ! ⇤0 : on input an opening proof ⇤ (for some position j), a
position i and two values v, v0, returns an updated opening ⇤0.
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Correctness. An updatable VC is perfectly correct if for honestly generated crs $ Setup(1�, n),
any vectorv, initial commitment (C, aux) Com(crs,v), position i 2 [n],⇤ Open(crs, aux, i),
and any sequence of valid updates {(ik, vik , v0ik)}k2[m] that result into a vector v⇤, commitment
C⇤ and opening ⇤⇤, Ver(crs, C⇤,⇤⇤, i, v⇤i )) = 1 holds with probability 1.

Ef�ciency. An updatable VC is ef�cient if its algorithms ComUpdate and ProofUpdate run in
polylogarithmic time given polylogarithmic inputs.

3.6.2 Vector Commitments with Subvector Openings

A generalization of vector commitments proposed by Lai and Malavolta [145] is Vector Com-
mitments with subvector openings,12 in which one can open the commitment to an ordered
collection of multiple positions with a short proof. In this section we recall this generalization
of vector commitments with subvector openings (that for brevity we call SVC). It is easy to see
that the original notion of Catalano and Fiore [66] is a special case when the opened subvector
includes one position only.
We begin by recalling the notion of subvectors from [145].

De�nition 11 (Subvectors [145]). Let M be a set, n 2 N be a positive integer and I =
{i1, . . . , i|I|} ✓ [n] be an ordered index set. For a vector v 2 Mn, the I-subvector of v is
vI := (vi1 , . . . , vi|I|).

Let I, J ✓ [n] be two sets, and let vI ,vJ be two subvectors of some vector v 2 Mn.
The ordered union of vI and vJ is the subvector vI[J := (vk1 , . . . , vkm), where I [ J =
{k1, . . . , km} is the ordered sets union of I and J .

De�nition 12 (Vector Commitments with Subvector Openings). A vector commitment scheme
with subvector openings (SVC) is a tuple of algorithms VC = (Setup,Com,Open,Ver) that
work as follows and satisfy correctness, position binding and conciseness de�ned below.

• Setup(1�,M)! pp : Given the security parameter �, and description of a message space
M for the vector components, the probabilistic setup algorithm outputs a common reference
string pp.

• Com(pp,v) ! (C, aux) : On input pp and a vector v 2 Mn, the committing algorithm
outputs a commitment C and an auxiliary information aux.

• Open(pp, I,y, aux) ! ⇡I : On input the CRS pp, a vector y 2Mm, an ordered index set
I ⇢ N and auxiliary information aux, the opening algorithm outputs a proof ⇡I that y is the
I-subvector of the committed message.

• Ver(pp, C, I,y,⇡I)! b 2 {0, 1} : On input the CRS pp, a commitment C, an ordered set of
indices I ⇢ N, a vector y 2Mm and a proof ⇡I , the veri�cation algorithm accepts (i.e., it
outputs 1) only if ⇡I is a valid proof that C was created to a vector v = (v1, . . . , vn) such
that y = vI .
12This is also called VCs with batchable openings in an independent work by Boneh et al. [40].
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Correctness. A SVC scheme VC is (perfectly) correct if for all � 2 N, any vector length n any
ordered set of indices I ✓ [n], and any v 2Mn, we have:

Pr

2

64Ver(pp, C, I,vI ,⇡I) = 1 :

pp Setup(1�,M)

(C, aux) Com(pp,v)

⇡I  Open(pp, I,vI , aux)

3

75 = 1

Position Binding. A SVC scheme VC satis�es position binding if for all PPT adversaries A we
have:

Pr

2

64
Ver(pp, C, I,y,⇡) = 1

^ y 6= y0 ^
Ver(pp, C, I,y0,⇡0) = 1

:
pp Setup(1�,M)

(C, I,y,⇡,y0,⇡0) A(pp)

3

75 2 negl(�)

Conciseness. A vector commitment is concise if there is a �xed polynomial p(�) in the security
parameter such that the size of the commitment C and the outputs of Open are both bounded by
p(�), i.e., they are independent of n.

3.6.3 Functional Commitments

Functional commitments (FC), introduced by Libert, Ramanna and Yung [149], allow a sender
to commit to a vector v and then to open the commitment to a function y = f(v). As in vector
commitments, what makes this primitive non-trivial is a succinctness property, which requires
commitments and openings to be “short”, that is constant or logarithmic in the length of v. In our
work we use a slight generalization of the FC notion of [149] considering universal specializable
public parameters. This is a model, akin to the universal CRS of [127], where Setup creates
length-independent public parameters pp, which one can later specialize to a speci�c length n
by using a deterministic algorithm Specialize.

De�nition 13 (Functional Commitments). A functional commitment scheme for a class of func-
tions F is a tuple of algorithms FC = (Setup, Specialize,Com,Open,Ver) with the following
syntax and that satis�es correctness, succinctness, and function binding.

• Setup(1�) ! pp : given the security parameter �, outputs public parameters pp, which
contain the description of a domain D and a universal class of functions F = {Fn}n2N,
where Fn is a class of n-input functions {f : Dn ! R}.

• Specialize(pp,Fn) ! ppn : given public parameters pp and a description of the function
class Fn, outputs specialized parameters ppn.

• Com(ppn,v)! C : on input a vector v 2 Dn outputs a commitment C.

• Open(ppn,v, f)! ⇤ : on input a vector v 2 Dn and an admissible function f 2 Fn, outputs
an opening ⇤.

• Ver(ppn, C, f, y,⇤) ! b 2 {0, 1} : on input a commitment C, a function f 2 Fn, a value
y 2 R, and an opening ⇤, accepts (b = 1) or rejects (b = 0).
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Correctness. FC is correct if, for any public parameters pp  Setup(1�), any length n 2 N
and specialized ppn  Specialize(pp, n), any vector v 2 Dn and any admissible function
f 2 Fn, it holds

Ver(ppn,Com(ppn,v), f, f(v),Open(ppn,v, f)) = 1

Succinctness. FC is succinct if there exists a �xed polynomial p(·) such that for any n = poly,
commitments and openings generated in the scheme have size at most p(�, log n).

Function binding. For any PPT adversary A and any n = poly, we have

Pr

2

64
Ver(ppn, C, f, y,⇤) = 1

^ y 6= y0 ^
Ver(ppn, C, f, y

0,⇤0) = 1

:

pp Setup(1�)

(C, f, y,⇤, y0,⇤0) A(pp)

ppn  Specialize(pp,Fn)

3

75 = negl(�)

Remark 1. The Specialize algorithm is deterministically computed from pp and Fn. For this
reason, it suf�ces for Function Binding that the adversary A takes as input pp (instead of ppn).

Remark 2 (Preprocessing-based veri�cation). Our subsequent FC constructions (Chapter 7)
enjoy a preprocessing model of veri�cation, similar to that of preprocessing SNARKs [127]. This
means that one, given ppn and a function f , can generate a veri�cation key vkf and the latter
can be later used to verify any opening for f . In particular, while the cost of computing vkf can
depend on the complexity of the function, e.g., it is O(n) for a linear function with n coef�cients,
the subsequent cost of verifying openings using vkf depends only on the succinctness of the
scheme, e.g., it is a �xed p(�).

3.6.4 De�nition of Key-Value Map Commitments

Here we recall the notion of Key-Value Map Commitments [40, 3] and give a formal de�nition.
Key-Value maps are a generization of vectors where a value is associated with a key instead
of a position, the main difference being that keys can be arbitrary elements of a (typically)
exponentially large space. While in a vector the values are associated with subsequent indices.
A Key-Value Map Commitment (henceforth KVC) works analoguesly to a VC but commiting
to (and opening) a Key-Value Map. Below is the formal syntax and properties.

Given a key-value mapM, we write (k, ✏) 2M to denote thatM does not contain the key
k.

De�nition 14 (Key-Value Map Commitment). A Key-Value Map Commitment KVM = (Setup,
Com,Open,Ver) consists of the following algorithms:

• Setup(1�, n,K,V) ! crs: on input the security parameter �, an upper bound n on the
cardinality of the key-value maps to be committed, a key-space K, and a value-space V , the
setup algorithm returns the common reference string crs.

• Com(crs,M) ! (C, aux) : on input a key-value mapM = {(k1, v1), . . . , (km, vm)} ⇢
K ⇥ V , computes a commitment C and auxiliary information aux.

• Open(crs, aux, k)! ⇤: on input auxiliary information aux as produced by Com, and a key
k 2 K, the opening algorithm returns an opening ⇤.
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• Ver(crs, C,⇤, (k, v)) ! b : accepts (i.e., outputs b  1) if ⇤ is a valid opening of the
commitment C to the key k 2 K and value v 2 V [ {✏}, else rejects (i.e., outputs b 0).

Intuitively, a KVC scheme should be correct in the sense that, for honest execution of
the algorithms, an opening to a (k, v) 2M should correctly verify for a commitment toM.
While usual de�nitions for VCs consider perfect correctness, our work aims at also capturing
constructions that have a negligible probability of failing correctness. To capture this, we
introduce a strong notion called robust correctness, which essentially means that the expected
correctness condition holds with overwhelming probability even for key-value maps that are
adversarially chosen after seeing the public parameters. We note that such de�nition is strictly
stronger than a ‘classical’ correctness de�nition that measures the probability over any choice of
input but over the random and independent choice of the public parameters.

De�nition 15 (Robust Correctness). KVM is robust if for any PPT A the following probability
is overwhelming in �:

Pr

2

664Ver(crs, C,Open(crs, aux, k), (k, v)) = 1 :

crs $ Setup(1�, n,K,V)
(M, k, v) A(crs)

|M|  n, (k, v) 2 K ⇥ V [ {✏}
(C, aux) Com(crs,M)

3

775

De�nition 16 (Key-binding). KVM is key-value binding if for any PPT A:

Pr

2

4
Ver(crs, C,⇤, (k, v)) = 1
^Ver(crs, C,⇤, (k, v0)) = 1

^ v 6= v0
:

crs $ Setup(1�, n,K,V)
(C, k, v,⇤, v0,⇤0) A(crs)

3

5 = negl(�)

Below we de�ne an ef�ciency notion for KVCs, which aim to rule out “uninteresting”
constructions, e.g., schemes where either commitments or openings have size linear in the size
of the map or the key space. More formally,

De�nition 17 (Ef�cient KVC). A key-value map commitment KVM as de�ned above is ef�-
cient if for any crs $ Setup(1�, n,K,V), any key-value mapM ⇢ K ⇥ V , any (C, aux)  
Com(crs,M), any k 2 K and ⇤ Open(crs, aux, k), the bitsize of C and ⇤ is polylogarithmic
in n, i.e., it is bounded by a �xed polynomial p(�, log n).

We provide our de�nitions of updatable Key-Value Map Commitments in Section 8.4.1,
along with the corresponding robust correctness and ef�ciency notions.

3.7 Zero-Knowledge Proofs

Zero-Knolwedge Proofs [122] is an important notion in Cryptography where one can prove a
statement without revealing any other information apart from the validity of the statement. They
come in numerous variants and constructions. In the section we recall the variants of the notion
and the notation that we will be using throughout the thesis.
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3.7.1 Relations

First we de�ne formally what zero-knowledge proofs are going to be proving.
We describe this through the notion of Relations. A relationR is characterized by a predicate

P working with inputs x1, x2, . . . , xn. We say that a relation holds for (x1, x2, . . . , xn) iff
P (x1, x2, . . . , xn) = 1. In the context of Zero-Knowledge proofs we typically separate the
inputs into two parts: The statement and the witness . We write a relation as:

R = {( ; ) : P ( , ) = 1} .

Equivalently, sometimes we will write

R( ; ) = 1 , P ( , ) = 1

to denote the same relation. We use these two equivalent notations interchangeably throughout
the thesis.
Typically the relations we are treating are for NP-predicates where verifying the predicate

having and is ef�cient, while computing given is (assumed to be) computationally
hard. For instance a (conjectured) NP-relation is

RRSA-factoring = {N ; (p, q)) : N = p · q}

where verifying that p, q are factors ofN is easy while computing p and q is (pressumably) hard.
We writeR� for a family of relation parametrized by the security parameter �.

3.7.2 Non-Interactive Zero-Knowledge (NIZK)

We recall the de�nition of zero-knowledge non-interactive arguments of knowledge (NIZKs, for
short).

De�nition 18 (NIZK). A NIZK for {R�}�2N is a tuple of three algorithms ⇧ = (Setup,Prove,
VerProof) that work as follows and satisfy the notions of completeness, knowledge soundness
and (composable) zero-knowledge de�ned below.

• Setup(R)! (ek, vk) takes the security parameter � and a relation R 2 R�, and outputs a
common reference string consisting of an evaluation and a veri�cation key.

• Prove(ek, , )! ⇡ takes an evaluation key for a relation R, a statement , and a witness
such that R( , ) holds, and returns a proof ⇡.

• VerProof(vk, ,⇡)! b takes a veri�cation key, a statement , and either accepts (b = 1) or
rejects (b = 0) the proof ⇡.

Remark 3. Sometimes, when there is no ambiguity, we will call the output of the setup as
‘common reference string’ crs := (ek, vk) without separating the evaluation and veri�cation
keys.

Completeness. For any � 2 N, R 2 R� and ( , ) such that R( , ), it holds Pr[(ek, vk) 
Setup(R),⇡  Prove(ek, , ) : VerProof(vk, ,⇡) = 1] = 1.

Knowledge Soundness. LetRG be a relation generator such thatRG� ✓ R�. ⇧ has computa-
tional knowledge soundness forRG and auxiliary input distribution Z , denoted KSND(RG,Z)
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for brevity, if for every (non-uniform) ef�cient adversary A there exists a (non-uniform) ef�cient
extractor E such that Pr[GameKSNDRG,Z,A,E = 1] = negl. We say that VC is knowledge sound if
there exists benignRG and Z such that VC is KSND(RG,Z).

GameKSNDRG,Z,A,E ! b

(R, auxR) RG(1�) ; crs := (ek, vk) Setup(R)

Z  Z(R, auxR, crs) ;
�

,⇡
�
 A(R, crs, auxR,Z)

 E(R, crs, auxR,Z) ; b = VerProof(vk, ,⇡) ^ ¬R( , )

Composable Zero-Knowledge. A scheme VC satis�es composable zero-knowledge for a
relation generator RG if there exists a simulator S = (Skg,Sprv) such that both following
conditions hold:
Keys Indistinguishability For all adversaries A

Pr

2

64
(R, auxR) RG(1�)
crs Setup(R)

A(crs, auxR) = 1

3

75 ⇡ Pr

2

64
(R, auxR) RG(1�)
(crs, tdk) Skg(R)

A(crs, auxR) = 1

3

75

Proof Indistinguishability For all adversaries A = (A1,A2)

Pr

2

6666664

(R, auxR) RG(1�)
(crs, tdk) Skg(R)

( , , st) A1(crs, auxR)

⇡  Prove(ek, , )

A2(st,⇡) = 1

: R( , )

3

7777775
⇡ Pr

2

6666664

(R, auxR) RG(1�)
(crs, tdk) Skg(R)

( , , st) A1(crs, auxR)

⇡  Sprv(crs, tdk, )

A2(st,⇡) = 1

: R( , )

3

7777775

Remark 4 (On Knowledge-Soundness). In the NIZK de�nition above we use a non black-box
notion of extractability. Although this is virtually necessary in the case of zkSNARKs [118],
NIZKs can also satisfy stronger (black-box) notions of knowledge-soundness.

3.7.3 Succinct Non-Interactive Arguments of Knowledge (SNARKs)

Succinct Non-Interactive Arguments of Knowledge (henceforth SNARKs) we call a speci�c type
of NIZKs. First they are ‘arguments’ (in place of ‘proof’) of knowledge, meaning that knowledge
soundness hold only against polynomially bounded advesaries. Second, their distinguishing
property is ‘succinctness’, de�ned formally below. We note that SNARKs do not necessarily
have ‘zero-knoweldge’; in case they do we call them zkSNARKs.

3.7.3.1 SNARKs de�nition

De�nition 19 (zkSNARKs). ANIZK is called zero-knowledge succinct non-interactive argument
of knowledge (zkSNARK) if it is a NIZK as per De�nition 18 enjoying an additional property,
succinctness, i.e., if the running time of VerProof is poly(�+ | |+ log | |) and the proof size
is poly(�+ log | |).
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3.7.3.2 Commit-and-Prove SNARKs (CP-SNARKs)

We use the framework for black-box modular composition of commit-and-prove SNARKs (or
CP-SNARKs) in [61]. Informally a CP-SNARK is a SNARK that can ef�ciently prove properties
of inputs committed through some commitment scheme C. In more detail, a CP-SNARK for
a relation Rinner( ;u,!) is a SNARK that for a given commitment c can prove knowledge of

:= (u,!, o) such that c = Commit(u; o) and Rinner( ;u,!) holds. We can think of ! as a
non-committed part of the witness. In a CP-SNARK, besides the proof, the veri�er’s inputs are
and c.

3.7.3.3 Modular SNARKs through CP-SNARKs

We use the following folklore composition of (zero-knowledge) CP-SNARKs (cf. [61, Theorem
3.1]). Fixed a commitment scheme and given two CP-SNARKs CP1,CP2 respectively for two
“inner” relations R̃1 and R̃2, we can build a (CP) SNARK for their conjunction (for a shared
witness u) R̃⇤( cu , 1, 2;!1,!2) = R1( cu , 1;!1) ^R2( cu , 2;!2) like this: the prover
commits to u as cu  Commit(u, o); generates proofs ⇡1 and ⇡2 from the respective schemes;
outputs combined proof ⇡⇤ := (cu,⇡1,⇡2). The veri�er checks each proof over respective
inputs ( 1, cu) and ( 2, cu), with shared commitment cu.

3.7.4 Interactive Arguments of Knowledge

In Chapters 6 and 7 we will additionally be treating Interactive Arguments of Knowledge
(henceforth AoK). An (Interactive) AoK is a slight variant of NIZK where (1) the prover and the
veri�er interact in order to produce the proof (2) the knowledge-soundness holds only against
computationally bounded adversaries. The notions of interactive AoKs and NIZKs are very
close; for completeness and ease of presentation we recall the de�nitions of AoKs, that appear
in Chapters 6 and 7, here.

Let R : X ⇥W ! {0, 1} be an NP relation for a language L = {x : 9w s.t. R(x,w) = 1}.
An argument system for R is a triple of algorithms (Setup,P,V) such that: Setup(1�) takes as
input a security parameter � and outputs a common reference string crs; the prover P(crs, x, w)
takes as input the crs, the statement x and witness w; the veri�er V(crs, x) takes in the crs, the
statement x, and after interacting with the prover outputs 0 (reject) or 1 (accept). An execution
between the prover and veri�er is denoted with hP(crs, x, w),V(crs, x)i = b, where b 2 {0, 1}
is the output of the veri�er. If V uses only public randomness, we say that the protocol is public
coin.

De�nition 20 (Completeness). We say that an argument system (Setup,P,V) for a relation
R : X ⇥W ! {0, 1} is complete if, for all (x,w) 2 X ⇥W such that R(x,w) = 1 we have

Pr
⇥
hP(crs, x, w),V(crs, x)i = 1 : crs Setup(1�)

⇤
= 1.

Consider an adversary A = (A0,A1) modeled as a pair of algorithms such that A0(crs)!
(x, state) (i.e. outputs an instance x 2 X after crs  Setup(�) is run) and A1(crs, x, state)
interacts with a honest veri�er. We want an argument of knowledge to satisfy the following
properties:

Soundness. We say that an argument (Setup,P,V) is sound if for all PPT adversaries A =
(A0,A1) we have
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Pr


hA1(crs, x, state),V(crs, x)i = 1

and @w : R(x,w) = 1

����
crs Setup(�)

(x, state) A0(crs)

�
2 negl(�).

Knowledge Extractability. We say that (Setup,P,V) is an argument of knowledge if for all
polynomial time adversariesA1 there exists an extractor E running in polynomial time such that,
for all adversaries A0 it holds

Pr

2

4 hA1(crs, x, state),V(crs, x)i = 1
and (x,w0) /2 R

������

crs Setup(�)
(x, state) A0(crs)
w0  E(crs, x, state)

3

5 2 negl(�).

Succinctness. Finally we informally recall the notion of succinct arguments, which requires
the communication and veri�er’s running time in a protocol execution to be independent of the
witness length.
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ZERO-KNOWLEDGE PROOFS
FOR SET MEMBERSHIP
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4
ZERO-KNOWLEDGE PROOFS FOR SET MEMBERSHIP
OF SINGLETONS

The results of this chapter appear in a paper under the title "Zero-Knowledge Proofs for Set
Membership: Ef�cient, Succinct, Modular" published at the Financial Cryptography and Data
Security 2021 conference [31] and the Designs, Codes and Cryptography Journal [32].

4.1 Technical Contributions

In this chapter we investigate the problem of designing commit-and-prove zero-knowledge
systems for set membership and non-membership that can be used in a modular way and
ef�ciently composed with other zero-knowledge proof systems for potentially arbitrary relations.
Our main results are the following.
First, building upon the view of recent works on composable proofs [2, 61], we de�ne a

formal framework for commit-and-prove zkSNARKs (CP-SNARKs) for set (non-)membership.
The main application of this framework is a compiler that, given a CP-SNARK CPmem for set
membership and any other CP-SNARK CPR for a relation R, yields a CP-SNARK CP for the
composed relation “u 2 S ^ 9! : R(u,!)”. As a further technical contribution, our framework
extends the one in [61] in order to work with commitments from multiple schemes (including
set commitments, e.g., accumulators).
Second, we propose new ef�cient constructions of CP-SNARKs for set membership and

non-membership, in which elements of the accumulated set can be committed with a Pedersen
commitment in a prime order groupGq—a setting that, as argued before, is of practical relevance
due to the widespread use of these commitments and of proof systems that operate on them. In
more detail, we propose: four schemes (two for set membership and two for non-membership)
that enjoy constant-size public parameters and are based on RSA accumulators for committing
to sets, and a scheme over pairings that has public parameters linear in the size of the set, but
where the set can remain hidden.

Finally, we implement our solutions in a software library and experimentally evaluate their
performance.

Like the recent works [2] and [61], our work can be seen as showing yet another setting—set
membership— where the ef�ciency of SNARKs can bene�t from a modular design.

RSA-based constructions. Our �rst scheme, a CP-SNARK for set membership based on RSA

45



CHAPTER 4. ZERO-KNOWLEDGE PROOFS FOR SET MEMBERSHIP OF SINGLETONS

accumulators, supports a large domain for the set of accumulated elements, represented by binary
strings of a given length ⌘. Our second scheme, also based on RSA accumulators, supports
elements that are prime numbers of exactly µ bits (for a given µ). Neither scheme requires an
a-priori bound on the cardinality of the set. Both schemes improve the proof-of-knowledge
protocol by Camenisch and Lysyanskaya [57]: (i) we can work with a prime order group Gq of
“standard” size, e.g., 256 bits, whereas [57] needs a much largerGq (see above). We note that the
size of Gq affects not only the ef�ciency of the set membership protocol but also the ef�ciency
of any other protocol that needs to interact with commitments to alleged set members; (ii) we
can support �exible choices for the size of set elements. For instance, in the second scheme, we
could work with primes of about 50 or 80 bits,13 which in practice captures virtually unbounded
sets and can make the accumulator operations 4–5⇥ faster compared to using ⇡ 256-bits primes
as in [57].

Our main technical contribution here involves a new way to link a proof of membership for
RSA accumulators to a Pedersen commitment in a prime order group, together with a careful
analysis showing this can be secure under parameters not requiring a larger prime order group
(as in [57]). See Section 4.4 for further details.

Pairing-based construction. Our pairing-based scheme for set membership supports set ele-
ments in Zq, where q is the order of bilinear groups, while the sets are arbitrary subsets of Zq

of cardinality less than a �xed a-priori bound n. This scheme has the disadvantage of having
public parameters linear in n, but has other advantages in comparison to previous schemes
with a similar limitation (and also in comparison to the RSA-based schemes above). First, the
commitment to the set can be hiding and untrusted for the veri�er, i.e., the set can be kept hidden
and it is not needed to check the opening of the commitment to the set; this makes it composable
with proof systems that could for example prove global properties on the set, i.e., that P (S)
holds. Second, the scheme works entirely in bilinear groups, i.e., no need of operating over
RSA groups. The main technical contribution here is a technique to turn the EDRAX vector
commitment [73] into an accumulator admitting ef�cient zero-knowledge membership proofs.

Extensions to Set Non-Membership. We propose extensions of both our CP-SNARK frame-
work and RSA constructions to deal with proving set non-membership, namely proving in
zero-knowledge that u /2 S with respect to a commitment c(u) and a committed set S. Our two
RSA-based schemes for non-membership have the same features as the analogous membership
schemes mentioned above: the �rst scheme supports sets whose elements are strings of length ⌘,
the second one supports elements that are prime numbers of µ bits, and both work with elements
committed using Pedersen in a prime order group and sets committed with RSA accumulators. A
byproduct of sharing the same parameters is that we can easily compose the set-membership and
non-membership schemes, via our framework, in order to prove statements like u 2 S1^u /2 S2.
Our technical contribution in the design of these schemes is a zero-knowledge protocol for
non-membership witnesses of RSA accumulators that is linked to Pedersen commitments in
prime order groups.

Transparent Instantiations. We generalize our building blocks for RSA groups to any hidden-
order group (appendix 4.8). By instantiating the latter with class groups and by using a transparent
CP-NIZK such as Bulletproofs, we obtain variants of our RSA-based schemes with transparent
setup.

13When prime representation is suitable for the application, distinct primes can be generated without a hash fuction
(e.g. by using sequential primes).
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4.2 De�nitions

We provide some additional to Chapter 3 de�nitions and formalization we will be speci�cally
using in this chapter.

4.2.1 Type-Based Commitments

We recall the notion of Type-Based Commitment schemes introduced by Escala and Groth [98].
In brief, a Type-Based Commitment scheme is a normal commitment scheme with the difference
that it allows one to commit to values from different domains. More speci�cally, the Commit
algorithm (therefore the VerCommit algorithm also) depends on the domain of the input, while
the commitment key remains the same. For example, as in the original motivation of [98], the
committer can use the same scheme and key to commit to elements that may belong to two
different groups G1,G2 or a �eld Zp. In our work we use type-based commitments. The main
bene�t of this formalization is that it can unify many commitment algorithms into one scheme.
In our case this is useful to formalize the notion of commit-and-prove NIZKs that work with
commitments from different groups and schemes.

More formally, a Type-Based Commitment is a tuple of algorithms Com = (Setup,Commit,
VerCommit) that works as a Commitment scheme de�ned above with the difference thatCommit
and VerCommit algorithms take an extra input t that represent the type of u. All the possible
types are included in the type space T 14.

De�nition 21. A type-based commitment scheme for a set of types T is a tuple of algorithms
Com = (Setup,Commit,VerCommit) that work as follows:

• Setup(1�) ! ck takes the security parameter and outputs a commitment key ck. This key
includes 8t 2 T descriptions of the input space Dt, commitment space Ct and opening space
Ot.

• Commit(ck, t, u)! (c, o) takes the commitment key ck, the type t of the input and a value
u 2 Dt, and outputs a commitment c and an opening o.

• VerCommit(ck, t, c, u, o)! b takes as a type t, a commitment c, a value u and an opening o,
and accepts (b = 1) or rejects (b = 0).

Furthermore, the security properties depend on the type, in the sense that binding and hiding
should hold with respect to a certain type.

De�nition 22. Let T be a set of types, and Com be a type-based commitment scheme for T .
Correctness, t-Type Binding and t-Type Hiding are de�ned as follows:

Correctness. For all � 2 N and any input (t, u) 2 (T ,Dt) we have:

Pr[ck Setup(1�), (c, o) Commit(ck, t, u) : VerCommit(ck, t, c, u, o) = 1] = 1.

t-Type Binding. Given t 2 T , for every polynomial-time adversary A:

Pr

"
ck Setup(1�)

(c, u, o, u0, o0) A(ck, t)
:
u 6= u0 ^ VerCommit(ck, t, c, u, o) = 1

^ VerCommit(ck, t, c, u0, o0) = 1

#
= negl

14Normally T is �nite and includes a small number of type, e.g. T = {G1,G2,Zp}.
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In case Com is t-Type Bidning for all t 2 T we will say that it is Binding.

t-Type Hiding. Given a t 2 T , for ck  Setup(1�) and every pair of values u, u0 2 Dt, the
following two distributions are statistically close: Commit(ck, t, u) ⇡ Commit(ck, t, u0).
In case Com is t-Type Hiding for all t 2 T we say it is Hiding.

Composing Type-Based Commitments. For simplicity we now de�ne an operator that allows
to compose type-based commitment schemes in a natural way.

De�nition 23. Let C and C0 be two commitment schemes respectively for (disjoint) sets of types
T and T 0. Then we denote by C • C0 the commitment scheme C̄ for T [ T 0 such as:

• C̄.Setup(secpar, secpar0)! ck : compute ck C.Setup(secpar) and ck0  C0.Setup(secpar0);
ck := (ck, ck0).

• C̄.Commit(ck := (ck, ck0), t, u) : If t 2 T then output C.Commit(ck, t, u); otherwise return
C0.Commit(ck0, t, u).

• C̄.VerCommit(ck := (ck, ck0), t, c, u, o) : If t 2 T then return C.VerCommit(ck, t, c, u, o);
otherwise return C0.VerCommit(ck0, t, c, u, o).

The following property of • follows immediately from its de�nition.

Lemma 1. Let C and C0 be two commitment schemes with disjoint sets of types. For all types t
if C or C0 is t-hiding (resp. t-binding) then C • C0 is t-hiding (resp. t-binding).

Remark 5. We observe that a standard non type-based commitment scheme with input space
D induces directly a type-based commitment scheme with the same input space and a type we
denote by T[D].

4.2.2 Commit-and-Prove NIZKs with Partial Opening

We now de�ne a variant of commit-and-prove NIZKs with a weaker notion of knowledge-
soundness. In particular we consider the case where part of the committed input is not assumed
to be extractable (or hidden)15, i.e., such input is assumed to be opened by the adversary. This
models scenarios where we do not require this element to be input of the veri�cation algorithm
(the veri�er can directly use a digest to it).

The motivation to de�ne and use this notion is twofold. First, in some constructions commit-
ments on sets are compressing but not knowledge-extractable. Second, in many applications
this de�nition is suf�cient since the set is public (e.g., the set contain the valid coins).
The de�nition below is limited to a setting where the adversary opens only one input in

this fashion16. We will assume, as a convention, that in a scheme with partial opening this
special input is always the �rst committed input of the relation, i.e. the one denoted by u1
and corresponding to D1. We note that the commitment to u1 does not require hiding for
zero-knowledge to hold.

15This is reminiscent of the soundness notions considered in [103]
16We can easily generalize the notion for an adversary opening an arbitrary subset of the committed inputs.
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4.2.3 Commit-And-Prove NIZKs

We give the de�nition of commit-and-prove NIZKs (CP-NIZKs) following the de�nition given in
[61, 30] and we extend it to type-based commitments. The main bene�t of such extension is that
we can formalize CP-NIZKs working with commitments over different domains. In a nutshell, a
CP-NIZK is a NIZK that can prove knowledge of ( , ) such that R( , ) holds with respect
to a witness = (u,!) such that u opens a commitment cu. As done in [61], we explicitly
considers the input domain Du at a more �ne grained-level splitting it over ` subdomains. We
call them commitment slots as each of theDi-s intuitively corresponds to a committed element17.
The description of the splitting is assumed part of R’s description.

In the remainder of this work we use the following shortcut de�nition. If C is a type-based
commitment scheme over set of types T , we say that a relation R over (D1 ⇥ · · ·⇥D`) is T -
compatible if for all j 2 [`] it holds that T[Dj ] 2 T . We say a relation familyR is T -compatible
if every R in R is T -compatible; a relation generator RG is T -compatible if range(RG) is
T -compatible.

De�nition 24 (CP-NIZKs [61]). Let {R�}�2N be a family of relations R over D ⇥Du ⇥D!

such that Du splits over ` arbitrary domains (D1 ⇥ · · ·⇥D`) for some arity parameter ` � 1.
Let C = (Setup,Commit,VerCommit) be a commitment scheme (as per De�nition 21) over set
of types T such that {R�}�2N is T -compatible. A commit and prove NIZK for C and {R�}�2N
is a NIZK for a family of relations {RC

�}�2N such that:

• every R 2 RC is represented by a pair (ck, R) where ck 2 C.Setup(1�) and R 2 R�;

• R is over pairs ( , ) where the statement is := ( , (cj)j2[`]) 2 D ⇥ C`, the witness is
:= ((uj)j2[`], (oj)j2[`],!) 2 D1 ⇥ · · ·⇥D` ⇥O` ⇥D!, and the relation R holds iff

^
j2[`]

VerCommit(ck,T[Dj ], cj , uj , oj) = 1 ^R( , (uj)j2[`],!) = 1

We denote knowledge soundness of a CP-NIZK for commitment scheme C and relation and
auxiliary input generatorsRG and Z as CP-KSND(C,RG,Z).

We denote a CP-NIZK as a tuple of algorithms CP = (Setup,Prove,VerProof). For ease
of exposition, in our constructions we adopt the following explicit syntax for CP’s algorithms.

• Setup(ck, R)! crs := (ek, vk)

• Prove(ek, , (cj)j2[`], (uj)j2[`], (oj)j2[`],!)! ⇡

• VerProof(vk, , (cj)j2[`],⇡)! b 2 {0, 1}

De�nition 25 (CP-NIZK with Partial Opening). A commit and prove NIZK with partial opening
for C and {R�}�2N is a NIZK for a family of relations {RC

�}�2N (de�ned as in De�nition
24)such that the property of knowledge soundness is replaced by knowledge soundness with
partial opening below.

Knowledge Soundness with Partial Opening. Let RG be a relation generator such that
RG� ✓ R�. VC has knowledge soundness with partial opening for C,RG and auxiliary input

17Each of the “open” elements in theDi-s (together with any auxiliary opening information) should also be thought
of as the witness to the relation as we require them to be extractable. On the other hand, the commitments themselves
are part of the public input.
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distribution Z , denoted CP-poKSND(C,RG,Z) for brevity, if for every (non-uniform) ef�cient
adversary A there exists a (non-uniform) ef�cient extractor E such that Pr[GameCP-poKSNDC,RG,Z,A,E =
1] = negl. We say that VC is knowledge sound for C if there exists benignRG and Z such that
VC is CP-poKSND(C,RG,Z)18.

GameCP-poKSNDC,RG,Z,A,E ! b

ck C.Setup(1�); (R, auxR) RG(1�); R := (ck, R)

crs := (ek, vk) Setup(R)

Z  Z(R, auxR, crs)�
, (cj)j2[`], u1, o1,⇡

�
 A(R, crs, auxR,Z)

�
(uj)j2[`], (oj)j2[`],!

�
 E(R, crs, auxR,Z)

b = VerProof(vk, , (cj)j2[`],⇡) ^

¬
�^

j2[`]
C.VerCommit(ck,T[Dj ], cj , uj , oj) = 1 ^R( , (uj)j2[`],!) = 1

�

Remark 6 (On Weaker ZK in the Context of Partial Opening). The notion of zero-knowledge for
CP-NIZKs with partial opening that is implied by our de�nition above implies that the simulator
does not have access to the opening of the �rst input (as it is the case in zero-knowledge for CP-
NIZKs in general). Since this �rst commitment is opened, in principle one could also consider
and de�ne a weaker notion of zero-knowledge where the simulator has access to the �rst opened
input. We leave it as an open problem to investigate if it can be of any interest.

Remark 7 (Full Extractability). If a CP-NIZK has an empty input u1 opened by the adversary
in the game above, then we say that it is fully extractable. This roughly corresponds to the notion
of knowledge soundness in De�nition 18.

4.2.3.1 Composition Properties of Commit-and-Prove Schemes

In [61] Campanelli et al. show a compiler for composing commit-and-prove schemes that
work for the same commitment scheme in order to obtain CP systems for conjunction of
relations. In this section we generalize their results to the case of typed relations and type-based
commitments. This generalization in particular can model the composition of CP-NIZKs that
work with different commitments, as is the case in our constructions for set membership in
which one has a commitment to a set and a commitment to an element.

We begin by introducing the following compact notation for an augmented relation generator.

De�nition 26 (Augmented Relation Generator). LetRG be a relation generator and F(1�) an
algorithm taking as input a security parameter. Then we denote byRG[F ] the relation generator
returning (R, (auxR, outF )) where outF  F(1�) and (R, auxR) RG(1�).

18We point out that, although in the game below we make explicit the commitment opening in the relation, this is
essentially the same notion of knowledge soundness as in CP-NIZKs (i.e. De�nition 18) where the only tweak is that
the adversary gives explicitly the �rst input in the commitment slot. We make commitments explicit hoping for the
de�nition to be clearer. This is, however, in contrast to the de�nition of CP-NIZKs where the commitment opening is
completely abstracted away inside the relation.
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The next lemma states that we can (with certain restrictions) trivially extend a CP-NIZK for
commitment scheme C to an extended commitment scheme C • C0.

Lemma 2 (Extending to Commitment Composition). Let C,C0 be commitment schemes de�ned
over disjoint type sets T and T 0. If CP is CP-poKSND(C,RG[C.Setup],Z) for some relation
and auxiliary input generators RG,Z . Then CP is CP-poKSND(C • C0,RG[C.Setup],Z) if
RG is T -compatible.

We now de�ne relation generators and auxiliary input generators for our composition construc-
tions.

AuxRG(1�) :

(R1, aux
(1)
R ) RG1(1

�)

(R2, aux
(2)
R ) RG2(1

�)

return (Rb, aux
(b)
R )b2{1,2}

AuxZ(ck, (crsb, Rb, aux
(b)
R )b2{1,2}) :

aux(1)Z  Z1(ck, R1, crs1, aux
(1)
R )

aux(2)Z  Z2(ck, R2, crs2, aux
(2)
R )

return (aux(b)Z )b2{1,2}

RG⇤(1�) :

(Rb, aux
(b)
R )b2{1,2}  AuxRG(1�)

return (R^
R1,R2

, (aux(b)R )b2{1,2})

Z⇤((ck, R^
R1,R2

), (ek⇤, vk⇤), (auxR, aux0R)) :

(aux(b)Z )b2{1,2}

 AuxZ(ck, (crsb, Rb, aux
(b)
R )b2{1,2})

return (aux(b)Z )b2{1,2}

RGb(1�) :

(Rb, aux
(b)
R )b2{1,2}

 AuxRG(1�)

return (Rb, aux
(b)
R

:= (R3�b, (aux
(b)
R )b2{1,2}))

Zb(ck, Rb, crsb, aux
(b)
R ) :

Parse auxR as (R3�b, (aux
(b)
R )b2{1,2})

crs3�b  CP3�b.Setup(ck, R3�b)

(aux(b)Z )b2{1,2}  AuxZ(ck, . . .

. . . , (crsb, Rb, aux
(b)
R )b2{1,2})

aux(b)Z := (crs3�b, (aux
(b)
Z )b2{1,2})

return aux(b)Z

Figure 4.1: Relation and Auxiliary Input Generators for AND Composition Construction

The following lemma shows how we can compose CP-NIZKs even when one of them is fully
extractable but the other is not. We are interested in the conjunction R^

asym of relations of type
R1(x1, (u0, u1, u3),!1) and R2(x2, (u2, u3),!2) where

R^
asym(x1, x2, (u0, u1, u2, u3),!1,!2) := R1(x1, (u0, u1, u3),!1) ^R2(x2, (u2, u3),!2)

Lemma 3 (Composing Conjunctions (with asymmetric extractability). Let C be a computation-
ally binding commitment scheme.IfCP1 isCP-poKSND(C,RG1,Z1) andCP2 isKSND(C,RG2,Z2)
(whereRGb,Zb are de�ned in terms ofRGb,Zb in Figure 4.1 for b 2 {1, 2}), then the scheme
CP^

asym in Figure 4.2 is CP-poKSND(C,RG⇤,Z⇤) where RG⇤,Z⇤ are as de�ned in Figure
4.1.

51



CHAPTER 4. ZERO-KNOWLEDGE PROOFS FOR SET MEMBERSHIP OF SINGLETONS

CP^
asym.Setup(pp, R^

R1,R2
) :

(ek1, vk1) CP1.Setup(ck, R1)

(ek2, vk2) CP2.Setup(ck, R2)

ek⇤ := (ekb)b2{1,2}

vk⇤ := (vkb)b2{1,2}

return (ek⇤, vk⇤)

CP^
asym.VerProof(vk⇤, 1, 2, (cj)j2[0,3],⇡

⇤) :

b(1)ok  CP1.VerProof(vk1, 1, (c0, c1, c3),⇡1)

b(2)ok  CP2.VerProof(vk2, 2, (c2, c3),⇡2)

return b(1)ok ^ b(2)ok

CP^
asym.Prove(ek⇤, 1, 2, (cj)j2[0,3], (uj)j2[0,3], (oj)j2[0,3],!1,!2) :

⇡1  CP1.Prove(ek1, 1, (c0, c1, c3), (u0, u1, u3), (o0, o1, o3),!1)

⇡2  CP2.Prove(ek2, 2, (c2, c3), (u2, u3), (o2, o3),!2)

return ⇡⇤ := (⇡b)b2{1,2}

Figure 4.2: CP-NIZK construction for AND composition (asymmetric case)

CP^
sym.Setup(pp, R^

R1,R2
) :

(ek1, vk1) CP1.Setup(ck, R1)

(ek2, vk2) CP2.Setup(ck, R2)

ek⇤ := (ekb)b2{1,2}

vk⇤ := (vkb)b2{1,2}

return (ek⇤, vk⇤)

CP^
sym.VerProof(vk⇤, 1, 2, (cj)j2[0,3],⇡

⇤) :

b(1)ok  CP1.VerProof(vk1, 1, (c0, c1, c3),⇡1)

b(2)ok  CP2.VerProof(vk2, 2, (c0, c2, c3),⇡2)

return b(1)ok ^ b(2)ok

CP^
sym.Prove(ek⇤, 1, 2, (cj)j2[0,3], (uj)j2[0,3], (oj)j2[0,3],!1,!2) :

⇡1  CP1.Prove(ek1, 1, (c0, c1, c3), (u0, u1, u3), (o0, o1, o3),!1)

⇡2  CP2.Prove(ek2, 2, (c0, c2, c3), (u0, u2, u3), (o0, o2, o3),!2)

return ⇡⇤ := (⇡b)b2{1,2}

Figure 4.3: CP-NIZK construction for AND composition (symmetric case)

The following lemma is a symmetric variant of Lemma 3, i.e. the CP-NIZKs we are composing
are both secure over the same commitment scheme and support partial opening, that is they
both handle relations with and adversarially open input u0. This time we are interested in
the conjunction R^

sym of relations of type R1(x1, (u0, u1, u3),!1) and R2(x2, (u0, u2, u3),!2)
where

R^
sym(x1, x2, (u0, u1, u2, u3),!1,!2) := R1(x1, (u0, u1, u3),!1) ^R2(x2, (u0, u2, u3),!2)

Lemma 4 (Composing Conjunctions (symmetric case)). LetC be a (type-based) computationally
binding commitment scheme. If CPb is CP-poKSND(C,RGb,Zb) (whereRGb,Zb are de�ned
in terms of RGb,Zb in Figure 4.1) for b 2 {1, 2}, then the scheme CP^

sym in Figure 4.3 is
CP-poKSND(C,RG⇤,Z⇤) whereRG⇤,Z⇤ are as de�ned in Figure 4.1.
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4.3 CP-SNARKs for Set Membership (and non-Membership)

In this section we discuss a specialization of CP-SNARKs for the speci�c NP relation that
models membership (resp. non-membership) of an element in a set, formally de�ned below.

Set membership relations. Let Delm be some domain for set elements, and let Dset ✓ 2Delm be
a set of possible sets over Du. We de�ne the set membership relation Rmem : Delm ⇥Dset as

Rmem(S, u) = 1 , u 2 S

This is the fundamental relation that we deal with in the rest of this work.
The non-membership relation Rnmem : Delm ⇥Dset can be de�ned analogously as

Rnmem(S, u) = 1 , u 62 S

CP-SNARKs for set membership. Intuitively, a commit-and-prove SNARK for set member-
ship allows one to commit to a set S and to an element u, and then to prove in zero-knowledge
that Rmem(S, u) = 1. More formally, let Rmem : Delm ⇥ Dset be a set membership relation
as de�ned above where T[Delm] = telm and T[Dset] = tset, and let ComS[elm be a type-based
commitment scheme for T such that tset, telm 2 T . Basically, ComS[elm allows one to either
commit an element ofDelm or to a set of values ofDelm. Then a CP-SNARK for set membership
is a CP-SNARK for the family of relations {Rmem

� } and a type-based commitment scheme
ComS[elm. It is deduced from de�nition 24 that this is a zkSNARK for the relation:

R = (ck,Rmem) over
(x,w) = ((x, c), (u, o,!)) := ( (? , (cS , cu) ) , ( (S, u) , (oS , ou) , ? ) )

such that R holds iff:

Rmem(S, u) = 1 ^ VerCommit(ck, tset, cS , S, oS) = 1 ^ VerCommit(ck, telm, cu, u, ou) = 1

A commit-and-prove version of Rnmem can be de�ned as a natural variant of the relation above.
Notice that for the relation Rmem it is relevant for the proof system to be succinct so that

proofs can be at most polylogarithmic (or constant) in the the size of the set (that is part of the
witness). This is why for set membership we are mostly interested in designing CP-SNARKs.

4.3.1 Proving arbitrary relations involving set (non-)membership.

As discussed in the introduction, a primary motivation of proving set membership in zero-
knowledge is to prove additional properties about an alleged set member. In order to make our
CP-SNARK for set membership a reusable gadget, we discuss a generic and simple method for
composing CP-SNARKs for set membership (with partial opening) with other CP-SNARKs
(with full extractability) for arbitrary relations. More formally, let Rmem be the set membership
relation over pairs (S, u) 2 X ⇥ Du as R be an arbitrary relation over pairs (u,!), then we
de�ne as R⇤ the relation:

R⇤(S, u,!) := Rmem(S, u) ^R(u,!)

The next corollary (direct consequence of Lemmas 2, 3) states we can straightforwardly compose
a CP-SNARK for set membership with a CP-SNARK for an arbitrary relation on elements of
the set.
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Corollary 1 (Extending Relations with Set Membership). Let CS,Cu be two computationally
binding commitment schemes de�ned over disjoint type sets TS and Tu. Let CPmem,CPu be
two CP-SNARKs and Rmem,RGu (resp. Zmem,Zu) be two relation (resp. auxiliary input)
generators. If CPmem is CP-poKSND(CS •Cu, Rmem,Zmem) and CPu is KSND(Cu,RGu,Zu)
then there exists a CP⇤ that is CP-poKSND(CS • Cu,RG⇤,Z⇤) whereRG⇤,Z⇤ are as de�ned
in Figure 4.1.

In a similar fashion, we can combine an arbitrary relation R with the relation for non-
membership obtaining relation R̄⇤ de�ned as:

R̄⇤(S, u,!) := Rnmem(S, u) ^R(u,!)

The next corollary states we can straightforwardly compose a CP-SNARK for set non-
membership with a CP-SNARK for an arbitrary relation on elements in the universe of the
set.

Corollary 2 (Extending Relations with Set non-Membership). Let CS,Cu be two computation-
ally binding commitment schemes de�ned over disjoint type sets TS and Tu. Let CPnmem,CPu be
two CP-SNARKs andRnmem,RGu (resp. Znmem,Zu) be two relation (resp. auxiliary input) gen-
erators. If CPnmem is CP-poKSND(CS •Cu, Rnmem,Znmem) and CPu is KSND(Cu,RGu,Zu)
then there exists a CP⇤ that is CP-poKSND(CS • Cu,RG⇤,Z⇤) whereRG⇤,Z⇤ are as de�ned
in Figure 4.1.

CP-SNARKs for set membership from accumulators with proofs of knowledge. As dis-
cussed in the introduction, CP-SNARKs for set membership are simply a different lens through
which we can approach accumulators that have a protocol for proving in zero-knowledge that
a committed value is in the accumulator (i.e., it is in the set succinctly represented by the
accumulator).

4.4 A CP-SNARK for Set Membership with Short Parameters

In this section we describe CP-SNARKs for set membership in which the elements of the sets
can be committed using a Pedersen commitment scheme de�ned in a prime order group, and the
sets are committed using an RSA accumulator. The advantage of having elements committed
with Pedersen in a prime order group is that our CP-SNARKs can be composed with any other
CP-SNARK for Pedersen commitments and relations R that take set elements as inputs. The
advantage of committing to sets using RSA accumulators is instead that the public parameters
(i.e., the CRS) of the CP-SNARKs presented in this section are short, virtually independent of
the size of the sets. Since RSA accumulators are not extractable commitments, the CP-SNARKs
presented here are secure in a model where the commitment to the set is assumed to be checked
at least once, namely they are knowledge-sound with partial opening of the set commitment.
A bit more in detail, we propose two CP-SNARKs. Our �rst scheme, calledMemCPRSA,

works for set elements that are arbitrary strings of length ⌘, i.e.,Delm = {0, 1}⌘, and for sets that
are any subset of Delm, i.e., Dset = 2Delm . Our second scheme,MemCPRSAPrm, instead works
for set elements that are prime numbers of exactly µ bits, and for sets that are any subset of such
prime numbers. This second scheme is a simpli�ed variant of the �rst one that requires more
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structure on the set elements (they must be prime numbers) but in exchange of that offers better
ef�ciency. So it is preferable in those applications that can work with prime representatives.

AnHigh-Level Overview of Our Constructions.We provide the main idea behind our scheme,
and to this end we use the simpler scheme MemCPRSAPrm in which set elements are prime
numbers in P(µ) :=

�
2µ�1, 2µ

�
. The commitment to the set P = {e1, . . . , en} is an RSA

accumulator [29, 18] that is de�ned as Acc = G
Q

ei2P ei for a random quadratic residue G 2
QRN . The commitment to a set element e is instead a Pedersen commitment ce = gehrq in
a group Gq of prime order q, where q is of ⌫ bits and µ < ⌫. For public commitments Acc
and ce, our scheme allows to prove in zero-knowledge the knowledge of e committed in ce
such that e 2 P and Acc = G

Q
ei2P ei . A public coin protocol for this problem was proposed

by Camenisch and Lysyanskaya [57]. Their protocol however requires various restrictions.
For instance, the accumulator must work with at least 2�-bit long primes, which slows down
accumulation time, and the prime order group must be more than 4�-bits (e.g., of 512 bits), which
is undesirable for ef�ciency reasons, especially if this prime order group is used to instantiate
more proof systems to create other proofs about the committed element. In our scheme the goal is
instead to keep the prime order group of “normal” size (say, 2� bits), so that it can be for example
a prime order group in which we can ef�ciently instantiate another CP-SNARK that could be
composed with ourMemCPRSAPrm. And we can also allow �exible choices of the primes size
that can be tuned to the application so that applications that work with moderately large sets can
bene�t in ef�ciency. In order to achieve these goals, our idea to create a membership proof is to
compute the following:

• An accumulator membership witnessW = G
Q

ei2P\{e} ei , and an integer commitment to e in
the RSA group, Ce = GeHr, where H 2 QRN .

• A ZK proof of knowledge CPRoot of a committed root for Acc, i.e. a proof of knowledge of e
andW such thatW e = Acc and Ce = GeHr. Intuitively, this gives that Ce commits to an
integer that is accumulated in Acc (at this point, however, the integer may be a trivial root,
i.e., 1).

• A ZK proof CPmodEq that Ce and ce commit to the same value modulo q.

• A ZK proof CPrange that ce commits to an integer in the range
�
2µ�1, 2µ

�
.

From the combination of the above proofs we would like to conclude that the integer committed
in ce is in P . Without further restrictions, however, this may not be the case; in particular,
since for the value committed in Ce we do not have a strict bound it may be that the integer
committed in ce is another eq such e = eq (mod q) but e 6= eq over the integers. In fact, the
proof CPRoot does not guarantee us that Ce commits to a single prime number e, but only that
e divides

Q
ei2P ei, namely e might be a product of a few primes in P or the corresponding

negative value, while its residue modulo q may be some value that is not in the set—what we call
a “collision”. We solve this problem by taking in consideration that eq is guaranteed by CPrange

to be in
�
2µ�1, 2µ

�
and by enhancing CPRoot to also prove a bound on e: roughly speaking

|e| < 22�s+µ for a statistical security parameter �s. Using this information we develop a careful
analysis that bounds the probability that such collisions can happen for a malicious e (see Section
4.4.2 for more intuition).

In the following section we formally describe the type-based commitment scheme supported
by our CP-SNARK, and a collection of building blocks. Then we present the MemCPRSA
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• Setup(1�) : Choose a prime order group Gq

of order q 2 (2⌫�1, 2⌫) and generators g,
h $Gq .
Return ck := (Gq, g, h)

• Commit(ck, tq, u) : sample r $Zq .
Return (c, o) := (guhr, r).

• VerCommit(ck, tq, c, u, r) : Output 1 if c =
guhr, otherwise output 0.

(a) PedCom

• Setup(1�, 1µ) :LetN  GenSRSAmod(1�),
F  $Z⇤

N , and Hprime $H; computeG 
F 2 mod N 2 QRN .
Return ck := (N,G,Hprime).

• Commit(ck, tS , S) :P := {Hprime(u) | u 2
S}, Acc GprodP .
Return (c, o) := (Acc,?).

• VerCommit(ck, tS ,Acc, S,?) : computeP :=
{Hprime(u) | u 2 S}.
Return 1 iff Acc = GprodP mod N .

(b) SetComRSA

Figure 4.4: RSA Accumulator and Pedersen commitment schemes for RSAHashmem.

andMemCPRSAPrm CP-SNARKs in Sections 4.4.2 and 4.4.3 respectively, and �nally we give
instantiations for some of our building blocks in Section 4.4.4.

Remark 8. Although we speci�cally describe our protocols for RSA groups, they generalize to
work over any Hidden Order Group with slight modi�cations. See appendix 4.8 for details.

4.4.1 Preliminaries and Building Blocks

Notation. Given a set S = {u1, . . . , un} ⇢ Z of cardinality n we denote compactly with
prodS :=

Qn
i=1 ui the product of all its elements. We use capital letters for elements in an RSA

group Z⇤
N , e.g., G,H 2 Z⇤

N . Conversely, we use small letters for elements in a prime order
group Gq, e.g., g, h 2 Gq. Following this notation, we denote a commitment in a prime order
group as c 2 Gq, while a commitment in an RSA group as C 2 Z⇤

N .

Commitment Schemes. Our �rst CP-SNARK, calledMemCPRSA, is for a family of relations
Rmem : Delm ⇥Dset such that Delm = {0, 1}⌘, Dset = 2Delm , and for a type-based commitment
scheme that is the canonical composition SetComRSA•PedCom of the two commitment schemes
given in Fig. 4.4. PedCom is essentially a classical Pedersen commitment scheme in a group
Gq of prime order q such that q 2 (2⌫�1, 2⌫) and ⌘ < ⌫. PedCom is used to commit to set
elements and its type is tq. SetComRSA is a (non-hiding) commitment scheme for sets of ⌘-bit
strings, that is built as an RSA accumulator [29, 18] to a set of µ-bit primes, each derived from
an ⌘-bit string by a deterministic hash function Hprime : {0, 1}⌘ ! P

�
2µ�1, 2µ

�
. SetComRSA

is computationally binding under the factoring assumption19 and the collision resistance of
Hprime. Its type for sets is tS .

Hashing to primes. The problem of mapping arbitrary values to primes in a collision-resistant
manner has been studied in the past, see e.g., [115, 55, 84], and in [108] a method to generate

19Here is why: �nding two different sets of primes P, P 0
, P 6= P

0 such that GprodP = Acc = G
prodP 0 implies

�nding an integer ↵ = prodP � prodP 0 6= 0 such that G↵ = 1. This is known to lead to an ef�cient algorithm for
factoring N .
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random primes is presented. Although the main idea of our scheme would work with any
instantiation of Hprime, for the goal of signi�cantly improving ef�ciency, our construction
considers a speci�c class of Hprime functions that work as follows. Let H : {0, 1}⌘ ⇥ {0, 1}◆ !
{0, 1}µ�1 be a collision-resistant function, and de�ne Hprime(u) as the function that starting
with j = 0, looks for the �rst j 2 [0, 2◆ � 1] such that the integer represented by the binary
string 1|H(u, j) is prime. In case it reaches j = 2◆ � 1 it failed to �nd a prime and outputs ? 20.
We consider two main candidates of such function H (and thus Hprime):

• Pseudorandom function. Namely H(u, j) := F(u, j) where F : {0, 1}⌘+◆ is a PRF with
public seed  and ◆ = dlogµ�e. Due to the density of primes, the corresponding Hprime runs
in the expected running timeO(µ) and? is returned with probability exp(��) = negl(�).21
Under the random oracle heuristic, F can be instantiated with a hash function like SHA256.

• Deterministic map. H(u, j) := f(u) + j with u > 2⌘�1 and j 2 (f(u), f(u + 1)), where
f(u) := 2(u + 2) log2(u + 1)2. The corresponding function Hprime(u) is essentially the
function that maps to the next prime after f(u). This function is collision-free (indeed it
requires to take µ > ⌘) and generates primes that can be smaller (in expectation) than the
function above. Cramer’s conjecture implies that the interval (f(u), f(u + 1)) contains a
prime when u is suf�ciently large.

aCP-NIZK forH computation and PedCom.We use a CP-NIZK CPHashEq for the relation

RHashEq : {0, 1}µ ⇥ {0, 1}⌘ ⇥ {0, 1}◆ de�ned as

RHashEq(u1, u2,!) = 1 , u1 = (1|H(u2,!))

and for the commitment scheme PedCom. Essentially, with this scheme one can prove that two
commitments ce and cu in Gq are such that ce = gehrq , cu = guhru and there exists j such
that e = (1|H(u, j)). As it shall become clear in our security proof, we do not have to prove
all the iterations of H until �nding j such that (1|H(u, j)) = Hprime(u) is prime, which saves
signi�cantly on the complexity of this CP-NIZK.

Integer Commitments. We use a scheme for committing to arbitrarily large integer values in
RSA groups introduced by Fujisaki and Okamoto [111] and later improved in [85]. We brie�y
recall the commitment scheme. Let Z⇤

N be an RSA group. The commitment key consists of two
randomly chosen generators G,H 2 Z⇤

N ; to commit to any x 2 Z one chooses randomly an
r $ [1, N/2] and computesC  GxHr; the veri�er checks whether or notC = ±GxHr. This
commitment scheme is statistically hiding, as long as G and H lie in the subgroup of Z⇤

N . This
can be achieved by setting G  F 2, H  J2 2 QR(N), where F, J are randomly sampled
from Z⇤

N . Moreover it’s computationally binding under the assumption that factoring is hard
in Z⇤

N . Furthermore, a proof of knowledge of an opening was presented in [85], its knowledge
soundness was based on the strong RSA assumption, and later found to be reducible to the plain
RSA assumption in [81]. We denote this commitment scheme as IntCom.

Strong-RSA Accumulators. As observed earlier, our commitment scheme for sets is an
RSA accumulator Acc computed on the set of primes P derived from S through the map
to primes, i.e., P := {Hprime(s)|s 2 S}. In our construction we use the accumulator’s

20For speci�c instantiations of H, ◆ can be set so that ? is returned with negligible probability.
21We assume for simplicity that the function never outputs ?, though it can happen with negligible probability.
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feature for computing succinct membership witnesses, which we recall works as follows. Given
Acc = G

Q
ei2P ei := GprodP , the membership witness for ek isWk = G

Q
ei2P\{ek} ei , which

can be veri�ed by checking ifW ek
k = Acc.

Argument of Knowledge of a Root. We make use of a zero-knowledge non-interactive argu-
ment of knowledge of a root of a public RSA group element Acc 2 QRN . This NIZK argument
is called CPRoot. More precisely, it takes in an integer commitment to a e 2 Z and then proves
knowledge of an e-th root of Acc, i.e., ofW = Acc

1
e . More formally, CPRoot is a NIZK for the

relation RRoot : (Z⇤
N ⇥ QRN ⇥ N)⇥ (Z⇥ Z⇥ Z⇤

N ) de�ned as
RRoot ((Ce,Acc, µ), (e, r,W )) = 1 iff

Ce = ±GeHr mod N ^ W e = Acc mod N ^ |e| < 2�z+�s+µ+2

where �z and �s are the statistical zero-knowledge and soundness security parameters respec-
tively of the protocol CPRoot. CPRoot is obtained by applying the Fiat-Shamir transform to a
public-coin protocol that we propose based on ideas from the protocol of Camenisch and Lysysan-
skaya for proving knowledge of an accumulated value [57]. In [57], the protocol ensures that the
committed integer e is in a speci�c range, different from 1 and positive. In our CPRoot protocol
we instead removed these constraints and isolated the portion of the protocol that only proves
knowledge of a root. We present the CPRoot protocol in Section 4.4.4.1; its interactive public
coin version is knowledge sound under the RSA assumption and statistical zero-knowledge.
Finally, we notice that the relation RRoot is de�ned for statements where Acc 2 QRN , which
may not be ef�ciently checkable given only N if Acc is adversarially chosen. Nevertheless
CPRoot can be used in larger cryptographic constructions that guarantee Acc 2 QRN through
some extra information, as is the case in our scheme.

Proof of Equality of Commitments in Z⇤
N and Gq. Our last building block, called CPmodEq,

proves in zero-knowledge that two commitments, a Pedersen commitment in a prime order group
and an integer commitment in an RSA group, open to the same value modulo the prime order
q = ord(G). This is a conjunction of a classic Pedersen ⌃-protocol and a proof of knowledge of
opening of an integer commitment [85], i.e. for the relation

RmodEq ((Ce, ce), (e, eq, r, rq)) = 1 iff

e = eq mod q ^ Ce = ±GeHr mod N ^ ce = geq mod qhrq mod q

We present CPmodEq in Section 4.4.4.2.

4.4.2 Our CP-SNARKMemCPRSA

We are now ready to present our CP-SNARKMemCPRSA for set membership. The scheme is
fully described in Figure 4.5 and makes use of the building blocks presented in the previous
section.

The Setup algorithm takes as input the commitment key of Com1 and a description ofRmem

and does the following: it samples a random generator H $QRN so that (G,H) de�ne a key
for the integer commitment, and generate a CRS crsHashEq of the CPHashEq CP-NIZK.

For generating a proof, the ideas are similar to the ones informally described at the beginning
of Section 4.4 for the case when set elements are prime numbers. In order to support sets S of
arbitrary strings the main differences are the following: (i) we use Hprime in order to derive a
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set of primes P from S, (ii) given a commitment cu to an element u 2 {0, 1}⌘, we commit to
e = Hprime(u) in ce; (iii) we use the previously mentioned ideas to prove that ce commits to an
element in P (that is correctly accumulated), except that we replace the range proof ⇡range with
a proof ⇡HashEq that cu and ce commits to u and e respectively, such that 9j : e = (1|H(u, j)).

Remark 9 (On the support of larger ⌘.). In order to commit to a set element u 2 {0, 1}⌘ with the
PedCom scheme we require ⌘ < ⌫. This condition is actually used for ease of presentation. It is
straightforward to extend our construction to the case ⌘ � ⌫, in which case every u should be
split in blocks of less than ⌫ bits that can be committed using the vector Pedersen commitment.

• KeyGen(ck, R2) : Parse ck := ((N,G,Hprime), (Gq, g, h)) as the commitment keys of
SetComRSA and PedCom respectively. Sample a random generator H .

Generate crsHashEq $CPHashEq.Setup((Gq, g, h), RHashEq), a crs for CPHashEq.

Return crs := (N,G,H,Hprime,Gq, g, h, crsHashEq).

Given crs, one can de�ne crsRoot := (N,G,H), crsmodEq := (N,G,H,Gq, g, h).

• Prove(crs, (CS , cu), (S, u), (?, ru)) : Compute e  Hprime(u) = (1|H(u, j)), (ce, rq)  
Com1.Commit(ck, tq, e).

(Ce, r) IntCom.Commit((G,H), e); P  {Hprime(u) : u 2 S},W = G
Q

ei2P\{e} ei .

⇡Root  CPRoot.Prove(crsRoot, (Ce, CS , µ), (e, r,W ))

⇡modEq  CPmodEq.Prove(crsmodEq, (Ce, ce), (e, e, r, rq))

⇡HashEq  CPHashEq.Prove(crsHashEq, (ce, cu), (e, u), (rq, ru), j)

Return ⇡ := (Ce, ce,⇡Root,⇡modEq,⇡HashEq).

• VerProof(crs, (CS , cu),⇡) : Return 1 iff
CPRoot.VerProof(crsRoot, (Ce, CS , µ),⇡Root) = 1 ^
CPmodEq.VerProof(crsmodEq, (Ce, ce),⇡modEq) = 1^
CPHashEq.VerProof(crsHashEq, (ce, cu),⇡HashEq) = 1

Figure 4.5: MemCPRSA CP-SNARK for set membership

The correctness ofMemCPRSA can be checked by inspection: essentially, it follows from
the correctness of all the building blocks and the condition that ⌘, µ < ⌫. For succinctness, we
observe that the commitments CS , cu and all the three proofs have size that does not depend on
the cardinality of the set S, which is the only portion of the witness whose size is not a-priori
�xed.

Proof of Security. Recall that the goal is to prove in ZK that cu is a commitment to an element
u 2 {0, 1}⌘ that is in a set S committed in CS . Intuitively, we obtain the security of our
scheme from the conjunction of proofs for relations RRoot, RmodEq and RHashEq: (i) ⇡HashEq
gives us that ce commits to eq = (1|H(u, j)) for some j and for u committed in cu. (ii)
⇡modEq gives that Ce commits to an integer e such that e mod q = eq is committed in ce. (iii)
⇡Root gives us that the integer e committed in Ce divides prodP , where CS = GprodP with
P = {Hprime(ui) : ui 2 S}.
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By combining these three facts we would like to conclude that eq 2 P that, together with
⇡HashEq, should also guarantee u 2 S. A �rst problem to analyze, however, is that for e we do
not have guarantees of a strict bound in

�
2µ�1, 2µ

�
; so it may in principle occur that e = eq

(mod q) but e 6= eq over the integers. Indeed, the relation RRoot does not guarantee us that
e is a single prime number, but only that e divides the product of primes accumulated in CS .
Assuming the hardness of Strong RSA we may still have that e is the product of a few primes
in P or even is a negative integer. We expose a simple attack that could arise from this: an
adversary can �nd a product of primes from the set P , let it call e, such that e = eq (mod q)
but e 6= eq over the integers. Since e is a legitimate product of members of P , the adversary
can ef�ciently compute the e-th root of CS and provide a valid ⇡Root proof. This is what we
informally call a “collision”. Another simple attack would be that an adversary takes a single
prime e and then commits to its opposite eq  �e mod q in the prime order group. Again,
since e 2 P the adversary can ef�ciently compute the e-th root of CS ,W e = CS , and then the
corresponding �e-th root of CS ,

�
W�1

��e
= CS . This is a second type of attack to achieve

what we called “collision”. With a careful analysis we show that with appropriate parameters
the probability that such collisions occur can be either 0 or negligible.

One key observation is thatRRoot does guarantee a lower and an upper bound,�2�z+�s+µ+2

and 2�z+�s+µ+2 respectively, for e committed in Ce. From these bounds (and that e | prodP )
we get that an adversarial e can be the product of at most d = 1 + b�z+�s+2

µ c primes in P (or
their corresponding negative product). Then, if 2dµ  2⌫�2 < q, or dµ + 2  ⌫, we get that
e < 2dµ < q. In case e > 0 and since q is prime, e = eq mod q ^ e < q implies that e = eq
over Z, namely no collision can occur at all. In the other case e < 0 we have e > �2dµ and
e = eq (mod q) implies e = �q + eq < �2⌫�1 + 2µ < �2⌫�1 + 2⌫�2 = �2⌫�2. Therefore,
�2dµ < �2⌫�2, which is a contradiction since we assumed dµ+2  ⌫. So this type of collision
cannot happen.
If on the other hand we are in a parameters setting where dµ > ⌫ � 2, we give a concrete

bound on the probability that such collisions occur. More precisely, for this case we need to
assume that the integers returned by H are random, i.e., H is a random oracle, and we also use
the implicit fact that RHashEq guarantees that eq 2

�
2µ�1, 2µ

�
. Then we give a concrete bound

on the probability that the product of d out of poly(�) random primes lies in a speci�c range�
2µ�1, 2µ

�
, which turns out to be negligible when d is constant and 2µ�⌫ is negligible.

Since the requirements of security are slightly different according to the setting of parameters
mentioned above, we state two separate theorems, one for each case.

Theorem 1. Let PedCom, SetComRSA and IntCom be computationally binding commitments,
CPRoot, CPmodEq and CPHashEq be knowledge-sound NIZK arguments, and assume that the
Strong RSA assumption holds, and that H is collision resistant. If dµ+ 2  ⌫, thenMemCPRSA

is knowledge-sound with partial opening of the set commitments CS .

Theorem 2. Let PedCom, SetComRSA and IntCom be computationally binding commitments,
CPRoot, CPmodEq and CPHashEq be knowledge-sound NIZK arguments, and assume that the
Strong RSA assumption hold, and that H is collision resistant. If dµ + 2 > ⌫, d = O(1) is
a small constant, 2µ�⌫ 2 negl(�) and H is modeled as a random oracle, then MemCPRSA is
knowledge-sound with partial opening of the set commitments CS .

Remark 10. It is worth noting that Theorem 2 where we assume H to be a random oracle
requires a random oracle assumption stronger than usual; this has to do with the fact that while
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we assume H to be a random oracle we also assume that CPmodEq can create proof about correct
computations of H. Similar assumptions have been considered in previous works, see, e.g, [208,
Remark 2].

Finally, we state the theorem about the zero-knowledge ofMemCPRSA.

Theorem 3. Let PedCom, SetComRSA and IntCom be statistically hiding commitments, CPRoot,
CPmodEq and CPHashEq be zero-knowledge arguments. ThenMemCPRSA is zero-knowledge.

sketch. The proof is rather straightforward, so we only provide a sketch. We de�ne the simulator
S that takes as input (crs, CS , cu) and does the following:

• Parses crs := (N,G,H,Hprime,Gq, g, h, crsHashEq), from which it computes the correspond-
ing crsRoot := (N,G,H) and crsmodEq := (N,G,H,Gq, g, h).

• Samples at random C⇤
e  $Z⇤

N and c
⇤
e $Gq.

• Invokes SRoot(crsRoot, C⇤
e , CS), SmodEq(crsmodEq, C⇤

e , c
⇤
e) and SHashEq(crsHashEq, c⇤e, cu) the

corresponding simulators of CPRoot, CPmodEq and CPHashEq respectively. They output simu-
lated proof ⇡⇤Root, ⇡

⇤
modEq and ⇡

⇤
HashEq respectively.

• S outputs (C⇤
e , c

⇤
e,⇡

⇤
Root,⇡

⇤
modEq,⇡

⇤
HashEq).

Let ⇡ := (Ce, ce,⇡Root,⇡modEq,⇡HashEq) Prove(crs, (CS , cu), (S, u), (?, ru)) be the output
of a real proof. Since IntCom and PedCom are statistically hiding C⇤

e and c⇤e are indistinguish-
able from Ce and ce resp. Finally, since CPRoot, CPmodEq and CPHashEq are zero knowledge
arguments ⇡⇤Root, ⇡

⇤
modEq and ⇡

⇤
HashEq are indistinguishable from ⇡Root, ⇡modEq and ⇡HashEq

resp.

Notation. We introduce some notation that eases our proofs exposition. Let S = {u1, . . . , un} ⇢
Z be a set of cardinality n. We denote as prod a product of (an arbitrary number of) elements of
S, prod =

Q
i2I ui, for some I ✓ [n]. Furthermore, ⇧S = {prod1, . . . , prod2n�1} is the set of

all possible products and more speci�cally ⇧S,d ✓ ⇧S denotes the set of possible products of
exactly d elements of S, |I| = d, while for the degenerate case of d > n we de�ne ⇧S,d = ;.
We note that |⇧S,d| =

�n
d

�
(except for the degenerate case where |⇧S,d| = 0). For convenience,

in the special case of prod 2 ⇧S,|S|, i.e. the (unique) product of all elements of S, we will simply
write prodS . Finally, for a J ✓ [n] we let ⇧S,J = [j2J⇧S,j ; for example ⇧S,[1,...,d] = [dj=1⇧S,j

is the set of all possible products of up to d elements of S. For all of the above we also denote
with "�" the corresponding set of the opposite element, e.g. �⇧S = {�prod1, . . . ,�prod2n�1}

of Theorem 1. Let a malicious prover P⇤, a PPT adversary of Knowledge Soundness with
Partial Opening (see the de�nition in section 4.2.2) that on input (ck, Rmem, crs, auxR, auxZ)
outputs (CS , cu, S,⇡) such that the veri�er V accepts, i.e. VerProof(crs, CS , cu),⇡) = 1 and
VerCommit(ck, tS , CS , S,?) = 1 with non-negligible probability ✏. We will construct a PPT
extractor E that on the same input outputs a partial witness (u, rq) such that Rmem(S, u) =
1 ^ VerCommit(ck, tq, cu, u, rq) = 1.

For this we rely on theKnowledge Soundness ofCPRoot,CPmodEq andCPHashEq protocols. E
parses ⇡ := (Ce, ce,⇡Root,⇡modEq,⇡HashEq) and crs := (N,G,H,Hprime,Gq, g, h, crsHashEq),
from which it computes the corresponding crsRoot := (N,G,H) and crsmodEq := (N, G,
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H, Gq, g, h). Then constructs an adversary ARoot for CPRoot Knowledge Soundness that
outputs (Ce, CS , µ,⇡Root). It is obvious that since V accepts ⇡ then it also accepts ⇡Root, i.e.,
CPRoot.VerProof(crsRoot, (Ce, CS , µ),⇡Root) = 1. From Knowledge Soundness of CPRoot we
know that there is an extractor ERoot that outputs (e, r,W ) such that Ce = ±GeHr (mod N)^
W e = CS (mod N) ^ |e| < 2�z+�s+µ+2. Similarly, E constructs adversaries AmodEq and
AHashEq of protocols CPmodEq and CPHashEq respectively. And similarly there are extractors
EmodEq and EHashEq that output (e0, eq, r0, rq) such that e0 = eq (mod q) ^ Ce0 = ±Ge0Hr0

(mod N) ^ ceq = geq mod qhrq mod q and (e0q, u, r
0
q, ru, j) such that ce = ge

0
qhr

0
q ^ e0q =

(1|H(u, j)) respectively.
From the Binding property of the integer commitment scheme we get that e = e0 and r = r0

(over the integers), unless with a negligible probability. Similarly, from the Binding property
of the Pedersen commitment scheme we get that eq = e0q (mod q) and rq = r0q (mod q),
unless with a negligible probability. So if we put everything together the extracted values are
(e, r,W, eq, rq, u, ru, j) such that:

W e = CS (mod N) ^ |e| < 2�z+�s+µ+2 ^ e = eq (mod q) ^ eq = (1|H(u, j))

and additionally

Ce = ±GeHr ^ ce = geq mod qhrq mod q ^ VerCommit(ck, tq, cu, u, ru) = 1

FromVerCommit(ck, tS , CS , S,?) = 1we infer thatCS = GprodP , whereP := {Hprime(u) |
u 2 S}. From the strong RSA assumption sinceW e = CS = GprodP (mod N) we get e 2 ⇧P

or e 2 �⇧P , unless with a negligible probability.
Since, all the elements of P are outputs of Hprime they have exactly bitlength µ, that is

2µ�1 < ei < 2µ for each ei 2 P . This means that e is a (±) product of µ-sized primes. Let
|e| be a product of ` primes, meaning that 2`(µ�1) < |e| < 2`µ, and d := b�z+�s+µ+2

µ c. From
|e| < 2�z+�s+µ+2 we get that 2`µ < 2�z+�s+µ+2 ) ` < d which means that e 2 ⇧P,[1,...,d] or
e 2 �⇧P,[1,...,d] (i.e. e is a (±) product of at most d primes).
First we show that e 2 ⇧P , i.e., that e cannot be negative. Let e 2 �⇧P,[1,...,d]. We use

the fact that e = eq (mod q), so e  �q + eq < �2⌫�1 + 2µ < �2⌫�1 + 2⌫�2 = �2⌫�2.
Since �2dµ < e this leads to �2dµ < �2⌫�2 which contradicts the assumption dµ + 2  ⌫
(we used the fact that eq = (1|H(u, j)) to conclude that 2µ�1 < eq < 2µ, which comes from
the de�nition of H). So e > 0 or e 2 ⇧P,[1,...,d].

Recall that e < 2dµ. From the assumption dµ+2  ⌫ which means that e < 2dµ < 2⌫�2 <
q ) e < q. Since e = eq (mod q) and e < q this means that e = eq over the integers. Again
we are using the fact that eq = (1|H(u, j)) to conclude that 2µ�1 < eq < 2µ, which comes from
the de�nition of H, and combined with e = eq we get that 2µ�1 < e < 2µ. The last fact means
that e 2 ⇧P,{1} (i.e. e is exactly one prime from P ) otherwise it would exceed 2µ, so e 2 P .
Finally, e = eq = (1|H(u, j)) = Hprime(u) 2 P = {Hprime(u1), . . . ,Hprime(un)},

where S := {u1, . . . , un}. This means that there is an i such that Hprime(u) = Hprime(ui).
From collision resistance of Hprime we infer that u = ui. So we conclude that u 2 S or
Rmem(S, u) = 1 and as shown above VerCommit(ck, tq, cu, u, ru) = 1.

4.4.2.1 Collision Finding Analysis

For the second theorem we cannot count on the formula dµ + 2  ⌫ that ensures that the
extracted integer e lies inside [0, q�1]. As explained above, we can only rely on the randomness
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of each prime to avoid the described "collisions". First, we formally de�ne what a "collision" is
through a probabilistic experiment, CollisionFinding, and then we compute a concrete bound
for the probability that this event happens, i.e. the experiment outputs 1. Finally, we state a
theorem that shows this probability is asymptotically negligible under the assumption that 2µ�⌫
is a negligible value (and d is a constant).

CollisionFinding(µ, d,Gq, n)

Let P ✓ P
�
2µ�1, 2µ

�
be a randomly chosen set of cardinality n, i.e. each e 2 P is chosen

uniformly at random, ei $P
�
2µ�1, 2µ

�
meaning that:

1. ei is prime.

2. 2µ�1  ei  2µ

3. Pr[ei = x] = µ
2µ + negl(�) for each x 2 P

�
2µ�1, 2µ

�

The output of the experiment is 1 iff there exists prod 2
�
⇧P,[2,d] [ �⇧P,[2,d]

�
such that

(prod mod q) 2
�
2µ�1, 2µ

�

Lemma 5. Let Gq be a prime order group of order q 2
�
2⌫�1, 2⌫

�
and µ such that µ < ⌫ then

Pr[CollisionFinding(µ, d,Ge, n) = 1]  2 ·
Pd

j=2
(nj)2

(j+1)µ�j�⌫(2j�1)

2jµ�j

(µ�1)j
�(nj)

Proof. First we will prove it for positive products, that is we bound the probability
Pr[CollisionFinding(µ, d,Ge, n) = 1|prod 2 ⇧P,[2,d]]. Let prod = q1...qj be a product of
exactly j primes for a 2  j  d. Since qi 2

�
2µ�1, 2µ

�
we get prod = q1...qj 2

�
2jµ�j , 2jµ

�
.

Also Z⇤
q is cyclic so we know that at most

&���2jµ�j , 2jµ
���

q

'
=

⇠
2jµ � 2jµ�j

q

⇡
=

⇠
2jµ�j · (2j � 1)

q

⇡
 2jµ�j�⌫+1 · (2j � 1)

integers in
�
2jµ�j , 2jµ

�
are equal to c modulo q, for any c 2 {0, 1, ..., q � 1}.

We are interested in the interval
�
2µ�1, 2µ

�
modulo q. From the previous we get that at

most 2jµ�j�⌫+1 · (2j � 1) ·
���2µ�1, 2µ

��� = 2jµ�j�⌫+1 · (2j � 1) · 2µ�1 = 2(j+1)µ�j�⌫(2j � 1)
integers in the range of

�
2jµ�j , 2jµ

�
are “winning” integers for the adversary, meaning that after

modulo q they are mapped to the winning interval
�
2µ�1, 2µ

�
.

From the distribution of primes we know that the number of primes in
�
2µ�1, 2µ

�
is approx-

imately 2µ�1

µ�1 . So there are (approximately)
⇣
2µ�1

µ�1

⌘j
= 2jµ�j

(µ�1)j different products of j primes
from P

�
2µ�1, 2µ

�
in
�
2jµ�d, 2jµ

�
. This leads us to the combinatorial experiment of choice of

B = 2jµ�j

(µ�1)j “balls”, with T = 2(j+1)µ�j�⌫(2j � 1) “targets” and X =
�n
j

�
“tries” without

replacement, where “balls” are all possible products, “targets” are the ones that go to
�
2µ�1, 2µ

�

modulo q (the winning ones) and tries are the number of products (for a constant j) that the
adversary can try. The “without replacement” comes from the fact that all products are different.
The �nal winning probability is:
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Pr[prod mod q 2
�
2µ�1, 2µ

�
^ prod 2 ⇧P,j ] 

T

B
+

T

B � 1
+

T

B � 2
+ . . .+

T

B �X

 X · T

B �X

=

�n
j

�
2(j+1)µ�j�⌫(2j � 1)

2jµ�j

(µ�1)j �
�n
j

�

By applying the union bound for all j’s we get:

Pr[prod mod q 2
�
2µ�1, 2µ

�
^ prod 2 ⇧P,[2,d]] 

dX

j=2

�n
j

�
2(j+1)µ�j�⌫(2j � 1)

2jµ�j

(µ�1)j �
�n
j

�

By using the same arguments for negative products we would conclude that

Pr[prod mod q 2
�
2µ�1, 2µ

�
^ prod 2 �⇧P,[2,d]] 

dX

j=2

�n
j

�
2(j+1)µ�j�⌫(2j � 1)

2jµ�j

(µ�1)j �
�n
j

�

Therefore

Pr[CollisionFinding(µ, d,Ge, n) = 1] =Pr[CollisionFinding(µ, d,Ge, n) = 1 ^ prod 2 ⇧P,[2,d]]+

+Pr[CollisionFinding(µ, d,Ge, n) = 1 ^ prod 2 �⇧P,[2,d]] =

2 ·
dX

j=2

�n
j

�
2(j+1)µ�j�⌫(2j � 1)

2jµ�j

(µ�1)j �
�n
j

�

Theorem 4. LetGq be a prime order group of order q 2
�
2⌫�1, 2⌫

�
, µ such that 2µ�⌫ 2 negl(�),

d constant and n = poly(�) then Pr[CollisionFinding(µ, d,Gq, n) = 1] 2 negl(�)

Proof. Now n = poly(�) so the set P is polynomially bounded. Due to lemma 5 it is straight-

forward that Pr[CollisionFinding(µ, d,Gq, n) = 1] 
Pd

j=2
(nj)2

(j+1)µ�j�⌫(2j�1)

2jµ�j

(µ�1)j
�(nj)

. Since d is

constant, for any j 2 [2, d]
�n
j

�
= O(nj) and we get:

2 ·
�n
j

�
2(j+1)µ�j�⌫(2j � 1)

2jµ�j

(µ�1)j �
�n
j

� = 2 · O(nj)2(j+1)µ�j�⌫(2j � 1)
2jµ�j

(µ�1)j �O(nj)

= 2 · O(nj)(2j � 1)(µ� 1)j

2jµ�j

2(j+1)µ�j�⌫ �
O(nj)(µ�1)j

2(j+1)µ�j�⌫

O(nj)(2j � 1)(µ � 1)j = poly(�) and O(nj)(µ�1)j

2(j+1)µ�j�⌫ = negl(�). Also 2jµ�j

2(j+1)µ�j�⌫ = 2⌫�µ,
therefore for j we get a probability bounded by poly(�)2µ�⌫

1�negl(�)2µ�⌫ = negl(�) by assumption.
Finally, Pr[CollisionFinding(µ, d,Gq, n) = 1]  (d� 1) · negl(�) = negl(�).
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• Setup(1�, 1µ) : Sample anRSAmodulusN  GenSRSAmod(1�), a randomgroup elementF  $Z⇤
N ,

compute G F 2 mod N 2 QRN . Return ck := (N,G).

• Commit(ck, tS , S) : compute Acc GprodP . Return (c, o) := (Acc,?).

• VerCommit(ck, tS ,Acc, S,?) : Return 1 if for all ei 2 P ei 2 P
�
2µ�1, 2µ

�
and Acc = GprodP mod

N , and 0 otherwise.

Figure 4.6: SetComRSA0 Commitment to Sets.

Remark 11. For the sake of generality, in CollisionFinding we do not specify how the random
primes are generated. In practice in our scheme they are outputs of the hash function Hprime
that we model as a random oracle.

Now we are ready to give the proof of theorem 2:

of theorem 2. The proof is almost the same as the one of Theorem 1 except for the next-to-last
paragraph, i.e. the justi�cation of e 2 ⇧P,{1}. Since dµ + 2 > ⌫ we cannot use the same
arguments to conclude to it. However, still e 2

�
⇧P,[1,...,d] [ �⇧P,[1,...,d]

�
.

Let e 2
�
⇧P,[1,...,d] [ �⇧P,[1,...,d]

�
, it is straightforward to reduce this case to the the collision

�nding problem. Assume that the adversary P⇤ made qH random oracle queries to H and let QH

be the set of answers she received. Further assume that exactly qHprime of the them are primes
and let QHprime be the set of them. We note that P ✓ QHprime, unless a collision happened in H.

Now let QHprime be the set of the CollisionFinding(µ, d,Gq, |QHprime|) experiment. It satis-
�es all three conditions since each ei 2 QHprime is an output of Hprime. Therefore ei is prime,
2µ�1 < ei < 2µ and since H is modeled as a random oracle the outputs of Hprime are uni-
formly distributed in P

�
2µ�1, 2µ

�
. Then for the extracted e, we know that e = eq (mod q) 2�

2µ�1, 2µ
�
and from the assumption e 2

�
⇧P,[1,...,d] [ �⇧P,[1,...,d]

�
, which (as noted above)

means that e 2
⇣
⇧QHprime,[2,...,d] [ �⇧QHprime,[2,...,d]

⌘
. SoCollisionFinding(µ, d,Gq, |QHprime|) =

1. Since the adversary is PPT |QHprime| = poly(�). Also, d = O(1) and 2µ�⌫ 2 negl(�) (from
the assumptions of the theorem) so the previous happens with a negligible probability according
to theorem 4. So we conclude that, unless with a negligible probability, e 2 ⇧P,{1}.

4.4.3 Our CP-SNARK for Set Membership for Primes Sets

In this section we show a CP-SNARK for set membership MemCPRSAPrm that supports set
elements that are prime numbers of exactly µ bits, i.e., Delm = P(2µ�1, 2µ), and Dset = 2Delm .
MemCPRSAPrm works for a type-based commitment scheme Com2 that is the canonical compo-
sition SetComRSA0 • PedCom where SetComRSA0 is in Fig. 4.6 (it is essentially a simpli�cation
of SetComRSA since elements are already primes).
The scheme MemCPRSAPrm is described in �gure 4.7. Its building blocks are the same

as the ones for MemCPRSA except that instead of a CP-NIZK for proving correctness of a
map-to-prime computation, we use a CP-NIZK for range proofs. Namely, we let CPrange be a
NIZK for the following relation on PedCom commitments c and two given integers A < B:

Rrange ((ce, A,B), (e, rq)) = 1 iff c = gehrq ^ A < eq < B
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• KeyGen(ck, R2) : parse ck := ((N,G), (Gq, g, h)) as the commitment keys of SetComRSA0

and PedCom respectively. Sample a random generator H .

Generate crsrange $CPrange.Setup((Gq, g, h), Rrange), a crs for CPrange.

Return crs := (N,G,H,Gq, g, h, crsrange).

Given crs, one can de�ne crsRoot := (N,G,H), crsmodEq := (N,G,H,Gq, g, h).

• Prove(crs, (CP , ce), (P, e), (?, rq)) :

(Ce, r) IntCom.Commit((G,H), e)

W = G
Q

ei2P\{e} ei .

⇡Root  CPRoot.Prove(crsRoot, (Ce, CP , µ), (e, r,W ))

⇡modEq  CPmodEq.Prove(crsmodEq, (Ce, ce), (e, e, r, rq))

⇡range  CPrange.Prove(crsrange, (2µ�1, 2µ), ce, e, rq)

Return ⇡ := (Ce,⇡Root,⇡modEq,⇡range).

• VerProof(crs, (CP , ce),⇡) : Return 1 iff
CPRoot.VerProof(crsRoot, (Ce, CP , µ),⇡Root) = 1^
CPmodEq.VerProof(crsmodEq, (Ce, ce),⇡modEq) = 1^
CPrange.VerProof(crsrange, ce,⇡range) = 1.

Figure 4.7: MemCPRSAPrm CP-SNARK for set membership

The idea behind the security of the scheme is similar to the one of theMemCPRSA scheme.
The main difference is that here we rely on the range proof ⇡range in order to “connect” the
Pedersen commitment ce to the accumulator. In particular, in order to argue the absence of
possible collisions here we assume that dµ+ 2  ⌫ holds, namely we argue security only for
this setting of parameters. It is worth noting that in applications where Delm is randomly chosen
subset of P

�
2µ�1, 2µ

�
, we could argue security even when dµ + 2 > ⌫, in a way similar to

Theorem 2. We omit the analysis of this case from the paper.

Theorem 5. Let PedCom, SetComRSA0 and IntCom be computationally binding commitments,
CPRoot, CPmodEq and CPrange be knowledge-sound NIZK arguments, and assume that the Strong
RSA assumption hold. If dµ + 2  ⌫, then MemCPRSAPrm is knowledge-sound with partial
opening of the set commitments cP . Furthermore, if PedCom, SetComRSA0 and IntCom are
statistically hiding commitments, and CPRoot, CPmodEq and CPrange be zero-knowledge, then
MemCPRSAPrm is zero-knowledge.

of Theorem 5. Knowledge Soundness with Partial Opening of CP : the proof is similar to the
one of theorem 1 except for some minor parts.
Let a malicious prover P⇤, a PPT adversary of Knowledge Soundness with Partial Opening (see
the de�nition in section 4.2.2) that on input (ck, Rmem, crs, auxR, auxZ) outputs (CP , ce, P,⇡)
such that the veri�er V accepts, i.e. VerProof(crs, CP , ce),⇡) = 1 and VerCommit(ck, tS , CP ,
P,?) = 1with non-negligible probability ✏. We will construct a PPT extractor E that on the same
input outputs a partial witness (e, r) such thatRmem(P, e) = 1^VerCommit(ck, tq, ce, e, r) = 1.
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For this we rely on the Knowledge Soundness of CPRoot,CPmodEq and CPrange protocols. E
parses ⇡ := (Ce,⇡Root,⇡modEq,⇡range) and crs := (N,G,H,Hprime,Gq, g, h, crsrange), from
which it computes the corresponding crsRoot := (N,G,H) and crsmodEq := (N, G,H ,Gq,
g, h). Then constructs an adversary ARoot for CPRoot Knowledge Soundness that outputs
(Ce, CP , µ,⇡Root). It is obvious that since V accepts ⇡ then it also accepts ⇡Root, i.e.,
CPRoot.VerProof(crsRoot, (Ce, CP , µ),⇡Root) = 1. From Knowledge Soundness of CPRoot we
know that there is an extractor ERoot that outputs (e, r,W ) such that Ce = ±GeHr (mod N)^
W e = CP (mod N)^e < 2�z+�s+µ+2. Similarly, E constructs adversariesAmodEq andArange

of protocols CPmodEq and CPrange respectively. And similarly there are extractors EmodEq and
Erange that output (e0, eq, r0, rq) such that e0 = eq (mod q)^Ce0 = ±Ge0Hr0 (mod N)^ceq =

geq mod qhrq mod q and (e0q, r0q) such that ce = ge
0
qhr

0
q ^ 2µ�1 < e0q < 2µ respectively.

From the Binding property of the integer commitment scheme we get that e = e0 and r = r0

(over the integers), unless with a negligible probability. Similarly, from the Binding property
of the Pedersen commitment scheme we get that eq = e0q (mod q) and rq = r0q (mod q),
unless with a negligible probability. So if we put everything together the extracted values are
(e, r,W, eq, rq) such that:

W e = CP (mod N) ^ e < 2�z+�s+µ+2 ^ e = eq (mod q) ^ 2µ�1 < eq < 2µ

and additionally
Ce = ±GeHr ^ ce = geq mod qhrq mod q

From VerCommit(ck, tS , CP , P,?) = 1we infer thatCP = GprodP , where for each ei 2 P
it holds that e 2 P

�
2µ�1, 2µ

�
. From the strong RSA assumption sinceW e = CP = GprodP

(mod N) we get e 2 ⇧P , unless with a negligible probability.
The rest of the analysis that justi�es e 2 P is identical to the one of the proof of theorem 1.

So e 2 P and as shown above VerCommit(ck, tq, ce, eq, rq) = 1.

Zero Knowledge: For the Zero Knowledge Property we rely on similar techniques with the ones
of the proof of theorem 3 except for the use of SHashEq. Here we use instead the simulator of the
CPrange protocol, Srange.

4.4.4 Proposed Instantiations of Protocols for RRoot and RmodEq

4.4.4.1 Protocol CPRoot.

We �rst give a protocol CPRoot0 for a simpler version of the Root relation in which the upper
bound on e is removed; let us call RRoot0 this relation.
Below is an interactive ZK protocol for RRoot0 :

1. Prover computes aW such thatW e = Acc and CW = WHr2 , Cr = Gr2Hr3 and sends to
the veri�er:

P ! V : CW , Cr

2. Prover and Veri�er perform a protocol for the relation:

R((Ce, Cr, CW , Acc), (e, r, r2, r3,�, �)) = 1 iff

Ce = GeHr ^ Cr = Gr2Hr3 ^Acc = Ce
W

✓
1

H

◆�
^ 1 = Ce

r

✓
1

H

◆� ✓ 1

G

◆�
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Root protocol

• On common reference string crs = (Z⇤
N , G,H)

• Prove(crs, (Ce, Acc), (e, r, w)) :

1. samples r2, r3 $ (�bN/4c , bN/4c) and computes CW  WHr2 , Cr  Gr2Hr3 .
2. Computes the non-interactive version of the above protocol

re $

�
�2�z+�s+µ, 2�z+�s+µ

�
, rr, rr2 , rr3  $

�
�bN/4c 2�z+�s , bN/4c 2�z+�s

�

r� , r� $

�
�bN/4c 2�z+�s+µ, bN/4c 2�z+�s+µ

�

↵1  GreHrr ,↵2  Grr2Hrr3 ,↵3  Cre
W

�
1
H

�r� ,↵4  Cre
r ( 1

H )r�
�
1
G

�r�

c H(↵1,↵2,↵3,↵4, Ce, Acc)

se  re � ce, sr  rr � cr, sr2  rr2 � cr2, sr3  rr3 � crr3 , s�  r� � cer2, s�  
r� � cer3

Returns ⇡  (CW , Cr,↵1,↵2,↵3,↵4, se, sr, sr2 , sr3 , s� , s�)

• VerProof(crs, (Ce, Acc),⇡) : returns 1 iff ↵1 = Cc
eG

seHsr ^ ↵2 = Cc
rG

sr2Hsr3 ^ ↵3 =
AcccCse

W

�
1
H

�s� ^ ↵4 = Cse
r

�
1
H

�s� � 1
G

�s� ^ se 2
⇥
�2�+�s+µ+1, 2�+�s+µ+1

⇤

Figure 4.8: Our Root protocol instantiation.

Let �s be the size of the challenge space, �z be the statistical security parameter and µ the
size of e.

• Prover samples:

re $

⇣
�2�z+�s+µ, 2�z+�s+µ

⌘

rr, rr2 , rr3  $

⇣
�bN/4c 2�z+�s , bN/4c 2�z+�s

⌘

r� , r� $

⇣
�bN/4c 2�z+�s+µ, bN/4c 2�z+�s+µ

⌘

and computes:

↵1 = GreHrr , ↵2 = Grr2Hrr3 , ↵3 = Cre
W

✓
1

H

◆r�

, ↵4 = Cre
r (

1

H
)r�

✓
1

G

◆r�

P ! V : (↵1,↵2,↵3,↵4)

• Veri�er samples the challenge c {0, 1}�s
V ! P : c

• Prover computes the response:

se = re � ce

sr = rr � cr, sr2 = rr2 � cr2, sr3 = rr3 � crr3
s� = r� � cer2, s� = r� � cer3

68



CHAPTER 4. ZERO-KNOWLEDGE PROOFS FOR SET MEMBERSHIP OF SINGLETONS

P ! V : (se, sr, sr2 , sr3 , s� , s�)

• Veri�er checks if:

↵1
?
= Cc

eG
seHsr ,↵2

?
= Cc

rG
sr2Hsr3 ,↵3

?
= AcccCse

W

✓
1

H

◆s�

,↵4
?
= Cse

r

✓
1

H

◆s� ✓ 1

G

◆s�

Theorem 6. Let Z⇤
N be an RSA group where strong-RSA assumption holds, then the above

protocol is a correct, knowledge sound and honest-veri�er zero knowledge protocol for RRoot0 .

The proof of the above is similar to the one of [57] where the more speci�c protocol was
introduced, but implicitly was including a protocol for RRoot0 . Before proceeding to the proof
we recall some properties related to RSA groups. First we expose two standard arguments. The
�rst is that obtaining a multiple of �(N) is equivalent to factoring N . This directly allows us
to argue that for any G 2 Z⇤

N , if one is able to �nd an x 2 Z such that Gx = 1 (mod N) then
under the factoring assumption x = 0, otherwise x is a multiple of �(N). Secondly, �nding
any non-trivial solution of the equation µ2 = 1 (mod N) in Z⇤

N (non-trivial means µ 6= ±1) is
equivalent to factoring N .

Remark 12. In 2017 Couteau et al. proved that in fact knowledge soundness for the protocol
of opening an integer commitment can be reduced to (plain) RSA problem [81]. This could
be inherited to our protocol too. However, the relation itself assumes strong RSA’s hardness,
otherwise �nding a root would be computable in polynomial time. Additionally, in the reduction
to (plain) RSA, the extractor’s probability of success is cubic, while in the reduction to strong
RSA linear, in the adversary’s probability of success.

Proposition 1. Let Z⇤
N be an RSA group with a modulus N and QRN the corresponding group

of quadratic residues modulo N .

1. LetG,H $QRN two random generators of QRN and a PPT adversaryA outputting ↵,� 2
Z⇤
N such that G

↵H� = 1 then under the assumption that DLOG problem is hard in QRN it
holds that ↵ = � = 0.

2. Let A,B 2 Z⇤
N and a PPT adversary A outputting x, y 2 Z⇤

N such that A
y = Bx and y | x

then under the assumption that factoring of N is hard it holds that A = ±B
x
y

Proof. 1. Since G,H 2 QRN there is an x 2 Z⇤
N such that G = Hx (mod N) which leads

to Hx↵+� = 1. As we discussed above under the assumption that factoring of N is hard,
x↵+ � = 0. If ↵ 6= 0 then x ��

↵ is a discrete logarithm of H , so assuming that DLOG is
hard ↵ = 0. Similarly, there is an y 2 Z⇤

N such that G
y = H (mod N) and with a similar

argument we can conclude that � = 0.

2. We discern two cases, y = ⇢ is odd or y = 2v⇢ is even (for an odd ⇢). In case y is odd
then it is co-prime with �(N) = p0q0 (otherwise if y = p0 or y = q0 we would be able
to factor N ), so y�1 (mod �(N)) exists and A = B

x
y . If y = 2v⇢ then

⇣
A�1B

x
y

⌘y
=

1 )
⇣
A�1B

x
y

⌘2v⇢
= 1 )

⇣
A�1B

x
y

⌘2v
= 1. From the second fact that we discussed

above under the factoring assumption
⇣
A�1B

x
y

⌘2v�1

= ±1. However for v > 1 the left

part of the equation is a quadratic residue so it cannot be �1, therefore
⇣
A�1B

x
y

⌘2v�1

= 1.
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Using the same facts repeatedly we will eventually conclude that
⇣
A�1B

x
y

⌘2
= 1, hence

A�1B
x
y = ±1) A = ±B

x
y .

proof of theorem 6. Correctness is straightforward. Honest-veri�er zero knowledge can be
shown with standard arguments used in ⌃-protocols and the fact that the commitments to
Ce, CW , Cr are statistically hiding. That is the simulatorS on input (Ce,Acc) samplesC⇤

W  $Z⇤
N

and C⇤
r  $Z⇤

N . Then samples

s⇤e $

⇣
�2�z+�s+µ � 2�z+µ, 2�z+�s+µ + 2�z+µ

⌘
,

s⇤r , s
⇤
r2 , s

⇤
r3  $

⇣
�bN/4c 2�z+�s � bN/4c 2�s , bN/4c 2�z+�s + bN/4c 2�s

⌘
,

s⇤� , s
⇤
�  $

⇣
�bN/4c 2�z+�s+µ � bN/4c 2�s+µ, bN/4c 2�z+�s+µ + bN/4c 2�s+µ

⌘
.

Finally it samples c⇤ $ {0, 1}�s . Then it sets ↵⇤
1  Cc

eG
seHsr , ↵⇤

2  Cc
rG

sr2Hsr3 , ↵⇤
3  

AcccCse
W

�
1
H

�s� and ↵⇤
4

?
= Cse

r

�
1
H

�s� � 1
G

�s� . S outputs ⇡⇤  (C⇤
W , C⇤

r , ↵
⇤
1, ↵

⇤
2, ↵

⇤
3, ↵

⇤
4, c

⇤,
s⇤e, s

⇤
r , s

⇤
r2 , s

⇤
r3 , s

⇤
� , s

⇤
�). The distribution of ⇡

⇤ is identical to the one of a real proof ⇡.
For the knowledge soundness, let an adversary of the knowledge soundness A that is able

to convince the veri�er V with a probability at least ✏. We will construct an extractor E that
extracts the witness (e, r, r2, r3,�, �). Using rewinding E gets two accepted transcripts

(CW , Cr,↵1,↵2,↵3,↵4, c, se, sr, sr2 , sr3 , s� , s�) and

(CW , Cr,↵1,↵2,↵3,↵4, c
0, s0e, s

0
r, s

0
r2 , s

0
r3 , s

0
� , s

0
�)

on two different challenges c and c0. E aborts if it cannot get two such transcripts (abort1).
We denote �c := c0 � c,�se := se � s0e,�sr := sr � s0r,�sr2 := sr2 � s0r2 ,�sr3 :=

sr3 � s0r3 ,�s� := s� � s0� ,�s� := s� � s0� then

C�c
e = G�seH�sr , C�c

r = G�sr2H�sr3 ,

Acc�c = C�se
W

✓
1

H

◆�s�

, 1 = C�se
r

✓
1

H

◆�s� ✓ 1

G

◆�s�

De�ne the (possibly rational) numbers ê := �se
�c , r̂ := �sr

�c , r̂2 :=
�sr2
�c , r̂3 :=

�sr3
�c . In case

�c doesn’t divide �se and �sr, E aborts (abort 2a). Similarly, in case �c doesn’t divide �sr2
and�sr3 , E aborts (abort 2b). Therefore, since the above aborts didn’t happen and according to
second point of proposition 1, Ce = ±GêH r̂ and Cr = ±Gr̂2H r̂3 .

Now if we replaceCr in the fourth equationwe get 1 = (±1)�seGr̂2�seH r̂3�se
�
1
H

��s� � 1
G

��s�

or (±1)�seGr̂2�se��s�H r̂3�se��s� = 1. However, (±1)�se = 1 otherwise if (±1)�se = �1
then�Gr̂2�se��s�H r̂3�se��s� would be a non-quadratic residue (sinceG,H are both in QRN

andQRN is closed under multiplication) equal to 1which is a quadratic residue and this would be
a contradiction, hence Gr̂2�se��s�H r̂3�se��s� = 1. According to the �rst point of proposition
1, under the factoring assumption r̂2�se ��s� = r̂3�se ��s� = 0, so r̂2�se = �s� .
Finally we replace �s� in the third equation and we get Acc�c = C�se

W

�
1
H

�r̂2�se )

Acc�c =
⇣

Cw

H r̂2

⌘�se
. As stated above �c divides �se so according to the second point of

proposition 1 Acc = ±
⇣

CW

H r̂2

⌘�se
�c

= ±
⇣

CW

H r̂2

⌘ê
. We discern three cases:

70



CHAPTER 4. ZERO-KNOWLEDGE PROOFS FOR SET MEMBERSHIP OF SINGLETONS

• Acc = +
⇣

CW

H r̂2

⌘�se
�c : Then E sets W̃  CW

H r̂2
and ẽ ê := �se

�c r̃  r̂ := �sr
�c as above. It

is clear that Acc = W̃ ẽ and as stated above Ce = GẽH r̃.

• Acc = �
⇣

CW

H r̂2

⌘�se
�c and �se

�c odd: Then E sets W̃  � CW

H r̃2
and ẽ  ê := �se

�c r̃  r̂ :=

�sr
�c as above. It is clear that Acc = W̃ ẽ and as stated above Ce = GẽH r̃.

• Acc = �
⇣

CW

H r̂2

⌘�se
�c and �se

�c even: this means that Acc is a non-quadratic residue, which is
a contradiction since in the RRoot0 relation we assume that Acc 2 QRN .

Finally the E outputs (ẽ, r̃, W̃ ).
Now we show that the probability the extractor terminates with outputting a valid witness

is O(✏). If the extractor does not abort then it clearly outputs a valid witness (under factoring
assumption). For the �rst abort, with a standard argument it can be shown that the extractor is
able to extract two accepting transcripts with probability O(✏) (for the probabilistic analysis
we refer to [85]). Thus Pr[abort1] = 1 � O(✏). For the second type of aborts (abort 2a and
abort 2b), they happen with negligible probability under the strong RSA assumption. For the
details see lemma 6 below, which was proven in [85]. Putting them together the probability of
success of E is at least O(✏)� negl(�s).

Lemma 6 ([85]). Given that abort 2a occurs a PPT adversary B can solve the strong RSA
problem with probability at least 12 � 2��s .

From the above we get Pr[B solves sRSA] �
�
1
2 � 2��s

�
Pr[abort 2a], so we conclude

to Pr[abort 2a]  1
1
2�2��s

Pr[B solves sRSA] = negl(�s). The same lemma holds for abort 2b.

Notice in the above protocol that

�2�z+�s+µ � 2�s+µ  se  2�z+�s+µ + 2�s+µ )

�2�z+�s+µ+1  se  2�z+�s+µ+1 )

�2�z+�s+µ+2  �se  2�z+�s+µ+2 )

�2�z+�s+µ+2  ê  2�z+�s+µ+2

so if we impose an additional veri�cation check of honest se size, i.e., se 2
⇥
�2�z+�s+µ+1,

2�z+�s+µ+1
⇤
, we get that |ê|  2�z+�s+µ+2. The veri�er performs an extra range check

se
?
2
⇥
�2�z+�s+µ+1, 2�z+�s+µ+1

⇤
and the resulting protocol is the CPRoot that except for

proving of knowledge of an e-th root also provides a bound for the size of |e|:

RRoot ((Ce, Acc, µ), (e, r,W )) = 1 iff

Ce = ±GeHr (mod N) ^W e = Acc (mod N) ^ |e| < 2�z+�s+µ+2
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4.4.4.2 Protocol CPmodEq.

Below we describe the public-coin ZK protocol for RmodEq. In Figure 4.9 we summarize the
corresponding NIZK obtained after applying the Fiat-Shamir transform to it.

1. Prover samples:
re  

⇣
�2�z+�s+µ, 2�z+�s+µ

⌘

rr  
⇣
�bN/4c 2�z+�s , bN/4c 2�z+�s

⌘

rrq  Zq

and computes:

↵1 = GreHrr , ↵2 = gre (mod p)hrrq

P ! V : (↵1,↵2)

2. Veri�er samples the challenge c {0, 1}�s

V ! P : c

3. Prover computes the response:

se = re � ce

sr = rr � cr

srq = rrq � crq (mod q)

P ! V : (se, sr, srq)

4. Veri�er checks if:

↵1
?
= ±Cc

eG
seHsr (mod N),↵2

?
= cceqg

se (mod q)hsrq

Theorem 7. Let Z⇤
N be an RSA group where strong-RSA assumption holds and G be a prime

order group where DLOG assumption holds then the above protocol is a correct, knowledge
sound and honest-veri�er zero knowledge protocol for RmodEq.

The proof is quite simple and is omitted.

4.4.5 Instantiations

We discuss the possible instantiations of our schemesMemCPRSA andMemCPRSAPrm that can
be obtained by looking at applications’ constraints and security parameters constraints.

Parameters for dµ + 2  ⌫ and µ  ⌫ � 2. First we analyze possible parameters that
satisfy the conditions dµ + 2  ⌫ ^ µ  ⌫ � 2 that is used in Theorems 1 and 2; we recall
d = 1+ b�z+�s+2

µ c, where �z and �s are statistical security parameters for zero-knowledge and
soundness respectively of CPRoot.
If the prime order group Gq is instantiated with (pairing-friendly) elliptic curves, then the

bitsize ⌫ of its order must be at least 2�. And recall that for correctness we need µ < ⌫.
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modEq protocol

• On common reference string crs = (Z⇤
N , G,H,G, g, h)

• Prove(crs, (Ce, ceq), (e, eq, r, rq)) :

re $

�
�2�z+�s+µ, 2�z+�s+µ

�
, rr $

�
�bN/4c 2�z+�s , bN/4c 2�z+�s

�
, rr0  $Zq

↵1  GreHrr ,↵2  gre (mod q)hrr0

c H(↵1,↵2, Ce, ceq)

se  re � ce, sr  rr � cr, sr0  rrq � crq (mod q)

Returns ⇡  (↵1,↵2, se, sr, srq)

• VerProof(crs, (Ce, ceq),⇡) : returns 1 iff ↵1 = ±Cc
eG

seHsr (mod N) ^ ↵2 =

cceqg
se (mod q)hsrq

Figure 4.9: Our modEq protocol instantiation.

Considering these constraints, one way to satisfy dµ + 2  ⌫ is to choose µ such that
⌫ � 1 > µ > �z + �s + 2. More speci�cally, a choice that maximizes security is ⌫ = 2�,
µ = 2�� 2 and �z = �� 3,�s = �� 2. For the case of theMemCPRSA scheme, this choice
yields an instantiation with nearly � bits of security and where the functionH does not necessarily
need to be a random oracle (yet it must be collision resistant).
Because of the constraint µ > �z + �s + 2, we the choice above implies the use of large

primes. This would be anyway the case if one instantiates the scheme with a collision-resistant
hash function H (e.g., SHA256 or SHA3), e.g., because set elements are quite arbitrary. If on the
other hand, one could support more speci�c set elements, one could use instead a deterministic
map-to-primes or even use our schemeMemCPRSAPrm in which set elements themselves are
primes. In this case one may wonder if it is possible to choose values of µ smaller than 2�;
for example µ ⇡ 30, 60, 80. The answer is positive although the characterization of such µ’s
require an involved analysis.
Let us �x ⌫ = 2�, and say that the statistical security parameters �z,�s are such that

�z + �s +2 = 2�� 2� c for some constant c (for example c = 4 if �z = �s = �� 4). We are
essentially looking for µ such that

µ  2�� 2� c and µ+ µ

�
2�� 2

µ
� c

µ

⌫
 2�� 2

, µ  2�� 2� c and
�
2�� 2

µ
� c

µ

⌫
 2�� 2

µ
� 1

From the fact x mod y = x� ybxy c, we can reduce the above inequality into

µ  2�� 2� c and 2�� 2� c mod µ � µ� c

that can admit solutions for c � 2.
For instance, if � = 128 and c = 4, then we get several options for µ, e.g., µ =

32, 42, 63, 84, 126, 127.
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Parameters for dµ+ 2 > ⌫. This case concerns onlyMemCPRSA and Theorem 2 in particular.
In this case, if one aims at maximizing security, say to get a scheme with �-bits of security, then
would have to set µ ⇡ 2� for collision resistance, and consequently select the prime order group
so that ⌫ � 3�. This choice however is costly in terms of performance since the ef�ciency of all
protocols that work in the prime order group degrades.

4.5 A CP-SNARK for Set Non-Membership with Short Parame-
ters

Here we describe two CP-SNARKs for set non-membership that work in a setting identical
to the one of section 4.4. Namely, the set is committed using an RSA accumulator, and the
element (that one wants to prove not to belong to the set) is committed using a Pedersen commit-
ment scheme. As in the previous section, we propose two protocols for non-membership, called
NonMemCPRSA andNonMemCPRSAPrm, in complete analogy toMemCPRSA andMemCPRSAPrm.
In the former, the elements of the set are arbitrary bit-strings of length ⌘, Du = {0, 1}⌘, while
in the latter the elements are primes of length µ. The schemes are fully described in �gures 4.10
and 4.11.

An High-Level Overview of the Constructions. The main idea of NonMemCPRSA is similar
to the one of the corresponding membership protocol,MemCPRSA. It uses in the same modular
way the modEq and HashEq protocols. The only difference lies in the third protocol: instead
of using Root it uses a new protocol Coprime. In a similar manner, NonMemCPRSAPrm uses
modEq, range and Coprime.
Let us explain the need of the Coprime protocol and what it does. First, recall how a

non-membership proof is computed in RSA Accumulators [147]. Let P be a set of primes to
be accumulated and prod the corresponding product. For any prime element e /2 P it holds
that gcd(e, prod) = 1, while for any member e 2 P it is gcd(e, prod) = e 6= 1. Thus,
proving that gcd(e, prod) = 1 would exhibit non-membership of e in P . Recall, also, that
using the extended Euclidean algorithm one can ef�ciently compute coef�cients (a, b) such that
a · e+ b · prod = gcd(e, prod). A non-membership proof for an element e w.r.t. an accumulator
Acc = Gprod consists of a pair (D = Ga, b), where a, b are such that a · e+ b · prod = 1. The
veri�cation is DeAccb = G, which ensures that e and prod are coprime, i.e. gcd(e, prod) = 1.
Therefore, the goal of the Coprime protocol is to prove knowledge of an element e committed in
an integer commitment Ce that satis�es this relation. A more formal de�nition of Coprime is
given below and an instantiation of this protocol is in Section 4.5.1.

Argument of Knowledge for a coprime element. We make use of a non-interactive argument
of knowledge of a non-membership witness of an element such that the veri�cation equation
explained above holds. More formally CPCoprime, is a NIZK for the relation: RCoprime : (Z⇤

N ⇥
QRN )⇥ (Z⇥ Z⇥ QRN ⇥ Z) de�ned as
RCoprime ((Ce,Acc), (e, r,D, b)) = 1 iff

Ce = ±GeHr mod N ^ DeAccb = G ^ |e| < 2�z+�s+µ+2

We propose an instantiation of a protocol for the above relation in the Section 4.5.1.

Our Constructions of NonMemCPRSA and NonMemCPRSAPrm. In Figures 4.10 and 4.11 we
give a full description of the schemes.
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MemCPRSA protocol

• KeyGen(ck, R2) : parse ck := ((N,G,Hprime), (Gq, g, h)) as the commitment keys of
SetComRSA and PedCom respectively. Sample a random generator H .

Generate crsHashEq $CPHashEq.Setup((Gq, g, h), RHashEq), a crs for CPHashEq.

Return crs := (N,G,H,Hprime,Gq, g, h, crsHashEq).

Given crs, one can de�ne crsCoprime := (N,G,H), crsmodEq := (N,G,H,Gq, g, h).

• Prove(crs, (CS , cu), (S, u), (?, ru)) : Compute e  Hprime(u) = (1|H(u, j)), (ce, rq)  
Com1.Commit(ck, tq, e).

(Ce, r)  IntCom.Commit((G,H), e); P  {Hprime(u) : u 2 S}, compute a, b s.t.
a · e+ b ·

Q
ei2P ei = 1 and set D = Ga.

⇡Coprime  CPCoprime.Prove(crsCoprime, (Ce, CS , µ), (e, r,D, b))

⇡modEq  CPmodEq.Prove(crsmodEq, (Ce, ce), (e, e, r, rq))

⇡HashEq  CPHashEq.Prove(crsHashEq, (ce, cu), (e, u), (rq, ru), j)

Return ⇡ := (Ce, ce,⇡Root,⇡modEq,⇡HashEq).

• VerProof(crs, (CS , cu),⇡) : Return 1 iff
CPRoot.VerProof(crsCoprime, (Ce, CS , µ),⇡Coprime) = 1 ^
CPmodEq.VerProof(crsmodEq, (Ce, ce),⇡modEq) = 1^
CPHashEq.VerProof(crsHashEq, (ce, cu),⇡HashEq) = 1.

Figure 4.10: NonMemCPRSA CP-SNARK for set non-membership

The security of these schemes follow very closely the one of the corresponding membership
schemes given in Section 4.4. Below we give the Theorems that state their security. The proofs
are omitted since they are almost identical to the corresponding proofs for the membership
schemes.

Theorem 8. Let PedCom, SetComRSA and IntCom be computationally binding commitments,
CPCoprime, CPmodEq and CPHashEq be knowledge-sound NIZK arguments, and assume that the
Strong RSA assumption hold, and that H is collision resistant. If dµ + 2  ⌫, �s + 1 < µ
and �s < log(N)/2 then NonMemCPRSA is knowledge-sound with partial opening of the set
commitments CS .

Theorem 9. Let PedCom, SetComRSA and IntCom be computationally binding commitments,
CPCoprime, CPmodEq and CPHashEq be knowledge-sound NIZK arguments, and assume that the
Strong RSA assumption hold, and that H is collision resistant. If dµ + 2 > ⌫, �s + 1 < µ,
�s < log(N)/2, d = O(1) is a small constant, 2µ�⌫ 2 negl(�) and H is modeled as a random
oracle, then NonMemCPRSA is knowledge-sound with partial opening of the set commitments
CS .

Theorem 10. Let PedCom, SetComRSA0 and IntCom be computationally binding commit-
ments, CPCoprime, CPmodEq and CPrange be knowledge-sound NIZK arguments, and assume
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MemCPRSA protocol

• KeyGen(ck, R2) : parse ck := ((N,G,Hprime), (Gq, g, h)) as the commitment keys of
SetComRSA0 and PedCom respectively. Sample a random generator H .

Generate crsrange $CPrange.Setup((Gq, g, h), Rrange), a crs for CPrange.

Return crs := (N,G,H,Hprime,Gq, g, h, crsrange).

Given crs, one can de�ne crsCoprime := (N,G,H), crsmodEq := (N,G,H,Gq, g, h).

• Prove(crs, (CP , ce), (P, e), (?, re)) : (Ce, r)  IntCom.Commit((G,H), e); compute a, b
s.t. a · e+ b ·

Q
ei2P ei = 1 and set D = Ga.

⇡Coprime  CPCoprime.Prove(crsCoprime, (Ce, CP , µ), (e, r,D, b))

⇡modEq  CPmodEq.Prove(crsmodEq, (Ce, ce), (e, e, r, rq))

⇡range  CPrange.Prove(crsrange, (2µ�1, 2µ), ce, e, rq)

Return ⇡ := (Ce, ce,⇡Coprime,⇡modEq,⇡range).

• VerProof(crs, (CP , ce),⇡) : Return 1 iff
CPCoprime.VerProof(crsCoprime, (Ce, CP , µ),⇡Coprime) = 1 ^
CPmodEq.VerProof(crsmodEq, (Ce, ce),⇡modEq) = 1^
CPrange.VerProof(crsrange, ce,⇡range) = 1.

Figure 4.11: NonMemCPRSAPrm CP-SNARK for set non-membership

that the Strong RSA assumption hold. If dµ + 2  ⌫, �s + 1 < µ and �s < log(N)/2
then NonMemCPRSAPrm is knowledge-sound with partial opening of the set commitments
cP . Furthermore, if PedCom, SetComRSA0 and IntCom are statistically hiding commitments,
and CPCoprime, CPmodEq and CPrange be zero-knowledge, then NonMemCPRSAPrm is zero-
knowledge.

4.5.1 Proposed Instantiations of Protocol for RCoprime

Below we propose an interactive ZK protocol for RCoprime. As the relation indicates, we need
to prove knowledge of (D, b) such that DeAccb = G, for a committed e. Proving opening of
Ce to e is straightforward, so the main challenge is to prove the non-membership equation. For
this the prover should send D and Accb to the veri�er so that she can check that DeAccb = G
herself. Of course, there are two caveats. The �rst one is that D and Accb cannot be sent in the
plain as we require zero-knowledge; we solve this by sending them in a hiding manner, i.e.,
Ca = DHra and CB = AccbH⇢B for random values ra, ⇢B . Consequently, the veri�cation
now should work with the hiding elements. Secondly, the veri�er should be ensured that Accb is
indeed an exponentiation of Acc with a known (to the prover) value b, otherwise soundness can
be broken. More speci�cally we require extraction of b, ⇢B such that CB = AccbH⇢B . This is
done using the partial opening of Acc to the set represented by prod, i.e., the protocol assumes
that Acc = Gprod is a common knowledge.
Below we present our protocol in full details.
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1. Prover computes Ca = DHra , Cra = GraHr0a , CB = AccbH⇢B , C⇢B = G⇢BH⇢0B and
sends to the veri�er:

P ! V : Ca, Cra , CB, C⇢B

2. Prover and Veri�er perform a protocol for the relation:

R((Acc, Ce, Ca, Cra , CB, C⇢B ), (e, b, r, ra, r
0
a, ⇢B, ⇢

0
B,�, �)) = 1 iff

CB = AccbH⇢B ^ Ce = GeHr ^ Cra = GraHr0a

^C⇢B = G⇢BH⇢0B ^ Ce
aCB = GH� ^ Ce

raC⇢B = G�H�

Let �s be the size of the challenge space, �z be the statistical security parameter and µ the
size of e.

• Prover samples:

rb, re $

⇣
�2�z+�s+µ, 2�z+�s+µ

⌘

r⇢B , rr, rra , rr0a , r⇢0B  $

⇣
�bN/4c 2�z+�s , bN/4c 2�z+�s

⌘

r� , r� $

⇣
�bN/4c 2�z+�s+µ, bN/4c 2�z+�s+µ

⌘

and computes:

↵2 = AccrbHr⇢B , ↵3 = GreHrr , ↵4 = GrraHrr0a ,

↵5 = Cre
a Hr� , ↵6 = Cre

raG
r�Hr� , ↵7 = Gr⇢BH

r⇢0
B

P ! V : (↵2,↵3,↵4,↵5,↵6,↵7)

• Veri�er samples the challenge c {0, 1}�s
V ! P : c

• Prover computes the response:

sb = rb � cb, se = re � ce

s⇢B = r⇢B � c⇢B, sr = rr � cr, sra = rra � cra, sr0a = rr0a � cr0a, s⇢0B = r⇢0B � c⇢0B

s� = r� + c(era + ⇢B), s� = r� + c(er0a + ⇢0B)

P ! V : (sb, se, s⇢B , sr, sra , sr0a , s⇢0B , s� , s�)

• Veri�er checks if:

↵2
?
= Cc

BAcc
sbHs⇢B , ↵3

?
= Cc

eG
seHsr , ↵4

?
= Cc

raG
sraHsr0a ,

↵5
?
= Cse

a Hs�GcC�c
B , ↵6

?
= Cse

raH
s�Gs�C�c

⇢B , ↵7
?
= Cc

⇢BG
s⇢BH

s⇢0
B ,

se
?
2
h
�2�z+�s+µ+1, 2�z+�s+µ+1

i
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Coprime protocol

• On common reference string crs = (Z⇤
N , G,H)

• Prove(crs, (Ce,Acc), (e, r, (D, b))) :

1. samples ra, ra0 , ⇢B, ⇢B0  $ (�bN/4c , bN/4c) and computes Ca = DHra , Cra =
GraHr0a , CB = AccbH⇢B , C⇢B = G⇢BH⇢0B .

2. Computes the non-interactive version of the above protocol
rb, re $

�
�2�z+�s+µ, 2�z+�s+µ

�

r⇢B , rr, rra , rr0a , r⇢0B  $

�
�bN/4c 2�z+�s , bN/4c 2�z+�s

�

r� , r� $

�
�bN/4c 2�z+�s+µ, bN/4c 2�z+�s+µ

�

↵2 = AccrbHr⇢B ,↵3 = GreHrr ,↵4 = GrraHrr0a ,↵5 = Cre
a Hr� ,↵6 =

Cre
raG

r�Hr� ,↵7 = Gr⇢BH
r⇢0

B

c H(↵2,↵3,↵4,↵5,↵6,↵7, Ce, Acc)

sb = rb � cb, se = re � ce, s⇢B = r⇢B � c⇢B, sr = rr � cr, sra = rra � cra, sr0a =
rr0a � crra , s⇢0B = r⇢0B � c⇢0B, s� = r� + c(era + ⇢B), s� = r� + c(er0a + ⇢0B)

Return
⇡  (Ca, Cra , CB, C⇢B ,↵2,↵3,↵4,↵5,↵6,↵7, sb, se, srb , s⇢B , sr, sra , sr0a , s⇢0B , s� , s�)

• VerProof(crs, (Ce,Acc),⇡) : Return 1 iff ↵2 = Cc
BAcc

sbHs⇢B ^ ↵3 = Cc
eG

seHsr ^ ↵4 =

Cc
raG

sraHsr0a ^ ↵5 = Cse
a Hs�GcC�c

B ^ ↵6 = Cse
raH

s�Gs�C�c
⇢B ^ ↵7 = Cc

⇢BG
s⇢BH

s⇢0
B ^

^se 2
⇥
�2�+�s+µ+1, 2�+�s+µ+1

⇤

Figure 4.12: Our �rst Coprime protocol instantiation.

Correctness. Here we show the correctness of the protocol.

↵2 = AccrbHr⇢B = Accsb+cbHs⇢B+c⇢B = AccsrbHs⇢B (AccbH⇢B )c

= AccsbHs⇢BCc
B

↵3 = GreHrr = Gse+ceHsr+cr = GseHsr(GeHr)c

= GseHsrCc
e

↵4 = GrraHrr0a = Gsra+craHsr0a
+cr0a = GsraHsr0a (GraHr0a)c

= GsraHsr0aCc
ra

↵5 = Cre
a Hr� = Cse+ce

a Hs��c(era+⇢B) = Cse
a Hs� (DeHera)cH�c(era+⇢B)

= Cse
a Hs� (DeH�⇢B )c = Cse

a Hs� (GAcc�bH�⇢B )c =

= Cse
a Hs�GcC�c

B

↵6 = Cre
raG

r�Hr� = Cse+ce
ra Gs��c(era+⇢B)Hs��c(er0a+⇢

0
B)

= Cse
raG

s�Hs�(GraHr0a)ceG�c(era+⇢B)H�c(er0a+⇢
0
B) = Cse

raG
s�Hs�G�c⇢BH�c⇢0B

= Cse
raG

s�Hs�C�c
⇢B

↵7 = Gr⇢BH
r⇢0

B = Gs⇢B+c⇢BH
s⇢0

B
+c⇢0B = Gs⇢BH

s⇢0
B (G⇢BH⇢0B )c

= Gs⇢BH
s⇢0

BCc
⇢B
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Security. Security of our scheme holds with the partial opening of Acc, i.e., when it is ensured
outside the protocol that Acc is a valid commitment of the set. The proof is similar to the one of
theorem 6. The main technical difference is in the extraction of the opening of CB , because Acc
is not a random generator sampled at the setup phase. However, from partial opening we know
that it is Acc = Gprod for a random generator G. This will allow us to state an alternative to
lemma 6 to justify the extraction of the opening of CB .

Theorem 11. Let Z⇤
N be an RSA group where strong-RSA assumption holds, then the above

protocol is honest-veri�er zero knowledge protocol and, also, if �s+1 < µ and �s < log(N)/2,
is knowledge sound with partial opening of Acc for RCoprime.

Proof. Zero-Knowledge can be proven with standard techniques, similar to the ones in the proof
of theorem 6 and is therefore omitted.
For the knowledge soundness, let an adversary of the knowledge soundness A that is able

to convince the veri�er V with a probability at least ✏. We will construct an extractor E that
extracts the witness (e, r, r2, r3,�, �). Using rewinding E gets two accepted transcripts

(Ca, Cra , CB, C⇢B ,↵2,↵3,↵4,↵5,↵6,↵7, c, sb, se, s⇢B , sr, sra , sr0a , s⇢0B , s� , s�)

(Ca, Cra , CB, C⇢B ,↵2,↵3,↵4,↵5,↵6,↵7, c
0, s0b, s

0
e, s

0
⇢B , s

0
r, s

0
ra , s

0
r0a
, s0⇢0B

, s0� , s
0
�)

on two different challenges c and c0. E aborts if it cannot get two such transcripts (abort1).
We denote�c := c0� c,�sb := sb� s0b,�se := se� s0e,�s⇢B := s⇢B � s0⇢B ,�sr := sr�

s0r,�sra := sra�s0ra ,�sr0a := sr0a�s0r0a ,�s⇢0B := s⇢0B�s0⇢0B
,�s� := s��s0� ,�s� := s��s0�

then

C�c
B = Acc�sbH�s⇢B ) CB = ±Accb̂H ⇢̂B (4.1)

C�c
e = G�seH�sr ) Ce = ±GêH r̂ (4.2)

C�c
ra = G�sraH�sr0a ) Cra = ±Gr̂aH r̂0a (4.3)

1 = C�se
a H�s�G��cC�c

B (4.4)

1 = C�se
ra H�s�G�s�C�c

⇢B (4.5)

C�c
⇢B = G�s⇢BH

�s⇢0
B ) C⇢B = ±G⇢̂BH ⇢̂0B (4.6)

de�ne the (possibly rational) numbers b̂ := �sb
�c , ê := �se

�c , r̂ := �sr
�c , r̂a := �sra

�c , r̂0a :=
�sr0a
�c ,

⇢̂B :=
�s⇢B
�c , ⇢̂

0
B :=

�s⇢0
B

�c .
E aborts in case �c doesn’t divide: �se and �sr(abort 2a), �sra and �sr0a(abort 2b),

�s⇢B and�s⇢0B (abort 2c). And �nally, E aborts if�c doesn’t divide�sb and�s⇢B (abort 2d).
Therefore, after these aborts didn’t happen we can infer the equivalent equalities on the right of
equations 4.2,4.3,4.6 and 6.2.
If we replace equations 4.3 and 4.6 in equation 4.5 we get

1 =
⇣
±Gr̂aH r̂0a

⌘�se
H�s�G�s�

⇣
±G⇢̂BH ⇢̂0B

⌘�c
or

1 = (±1)�se(±1)�cGr̂a�se+⇢̂B�c+�s�H r̂0a�se+⇢̂0B�c+�s� . SinceG,H, 1 are quadratic residues
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then (±1)�se(±1)�c = 1, hence 1 = Gr̂a�se+⇢̂B�c+�s�H r̂0a�se+⇢̂0B�c+�s� . Then under the
DLOG assumption r̂a�se + ⇢̂B�c+�s� = 0 = r̂0a�se + ⇢̂0B�c+�s� , which gives us that

�s� = �r̂a�se � ⇢̂B�c (4.7)

Finally, we replace equations 6.2 and 4.7 in equation 4.4 we get

1 = C�se
a H�r̂a�se�⇢̂B�cG��c

⇣
±Accb̂H ⇢̂B

⌘�c
or 1 = (±1)�cC�se

a Accb̂�cG��cH�r̂a�se

or
⇣
±Accb̂G�1

⌘�c
=
�
C�1
a Hra

��se . But as noted above �c divides �se so ±Accb̂G�1 =

±
�
C�1
a Hra

�ê ) Accb̂G�1 = ±
�
C�1
a H r̂a

�ê )
�

Ca
H r̂a

�ê
Accb̂ = ±G. We discern two cases:

•
�

Ca
H r̂a

�ê
Accb̂ = +G: Then E sets D̃  Ca

H r̂a , ẽ  ê := �se
�c , r̃  r̂ := �sr

�c and b̃  b̂ :=
�sb
�c

•
�

Ca
H r̂a

�ê
Accb̂ = �G: Then ê should be odd otherwise if ê = 2⇢ then G = �

�
Ca
H r̂a

�2⇢
Accb̂

would be a non-quadratic residue. So E sets D̃  � Ca
H r̂a , ẽ ê := �se

�c , r̃  r̂ := �sr
�c and

b̃ b̂ := �sb
�c . It is clear that D̃

ẽAccb̃ = G.

Finally the E outputs (ẽ, r̃, D̃, b̃).
Now we show that the probability the extractor terminates with outputting a valid witness is

O(✏). If the extractor does not abort then it clearly outputs a valid witness (under the factoring
assumption). For the �rst abort, with a standard argument it can be shown that the extractor is
able to extract two accepting transcripts with probability O(✏) (for the probabilistic analysis
we refer to [85]). Thus Pr[abort1] = 1� O(✏). For the aborts abort 2a, abort 2b and abort 2c
they happen with negligible probability ( 2

1�2��s+1Pr[B solves sRSA] each, for any PPT
adversary B) under the strong RSA assumption according to lemma 6. For abort 2d we cannot
directly use the same lemma as Acc is not a random generator that is part of the crs. However,
with a similar argument and using partial extractability we show below that the probability
for this abort is the same. Putting them together the probability of success of E is at least
O(✏)� 8

1�2��s+1Pr[B solves sRSA] = O(✏)� negl(�s).
For equation 6.2, we get from partial opening that Acc = GprodP , where P := {Hprime(u) |

u 2 S}, so
C�c
B = G

Q
u2S Hprime(u)·�sbH�s⇢B

We use a similar to [85] argument to prove that�c divides�sb and�s⇢B under the strong RSA
assumption, given that �s + 1 < µ. Then

CB = ±Accb̂H ⇢̂B (4.8)

Lemma 7. Let �s + 1 < µ and �s < log(N)/2 then �c divides �sb and �s⇢B under the
strong RSA assumption.

Proof. An adversary against the strong RSA assumption receives H 2 QRN and does the
following: sets G = H⌧ for ⌧  $ [0, 2�sN2] and sends (G,H) to the adversary A which
outputs a proof ⇡Coprime. Then we rewind to get another successful proof ⇡0Coprime and we use
the extractor as above to get C�c

B = G
Q

u2S Hprime(u)·�sbH�s⇢B or

C�c
B = H⌧

Q
u2S Hprime(u)·�sb+�s⇢B
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We can exclude the case that�c divides
Q

u2S Hprime(u), since�c is smaller than the domain of
the hash function Hprime, i.e. �c < Hprime(u) for each u 2 S, which comes from �s +1 < µ.
Assume that�c - �sb _�c - �s⇢B . we discern two cases:

• �c doesn’t divide ⌧
Q

u2S Hprime(u)·�sb+�s⇢B : then gcd(�c, ⌧
Q

u2S Hprime(u)·�sb+
�s⇢B ) = g and there are �, such that � ·�c+ ·

�
⌧
Q

u2S Hprime(u) ·�sb +�s⇢B
�
= g.

Thus

Hg = H�·�c+ ·(⌧
Q

u2S Hprime(u)·�sb+�s⇢B ) = H��c · C �c
B =

⇣
H� · C 

B

⌘�c

Since g divides �c we get H = ±
⇣
H� · C 

B

⌘�c
g . However H is a quadratic residue (thus

CB is so), meaning that H =
⇣
H� · C 

B

⌘�c
g , thus (H� · C 

B,
�c
g ) is a solution to the strong

RSA problem.

• �c divides ⌧
Q

u2S Hprime(u) · �sb + �s⇢B : let q` be the maximal q-power that divides
�c (i.e. q` is a factor of �) and doesn’t divide at least one of �sb and �s⇢B , where q is
prime. Such a q` should exist otherwise �c would divide both �sb and �s⇢B , which we
assumed it doesn’t. Notice that if q` divided�sb then it would also divide�s⇢B , as q` divides
⌧
Q

u2S Hprime(u) ·�sb +�s⇢B (from assumption), so q` - �sb.

q` |
 
⌧
Y

u2S
Hprime(u) ·�sb +�s⇢B

!
) ⌧

Y

u2S
Hprime(u) ·�sb +�s⇢B = 0 (mod q`)

We can write ⌧ := ⌧1 + ⌧2 ord(H). Notice that ⌧2 is information theoretically hidden to the
adversary and thus is uniformly random in [0, 2�sN2/ord(H)] � [0, 2�sN ] in its view.

) ⌧1
Y

u2S
Hprime(u) ·�sb + ⌧2ord(H)

Y

u2S
Hprime(u) ·�sb +�s⇢B = 0 (mod q`)

) ⌧2·�sb =

 
�⌧1

Y

u2S

Hprime(u) ·�sb ��s⇢B

!
·
 
Y

u2S

Hprime(u)

!�1

·(ord(H))�1 (mod q`)

To see that
Q

u2S Hprime(u) has an inverse modulo q` note that since �c < Hprime(u)
implies q` < Hprime(u), so gcd(

Q
u2S Hprime(u), q`) = 1. For the inverse of ord(H) note

that H 2 QRN so ord(H) 2 {q1, q2, q1q2}, where N = (2q1 + 1)(2q2 + 1) is the RSA
modulus. Then from �s < log(N)/2 we get�c < q1, q2 and thus gcd(ord(H), q`) = 1.

As noted above, ⌧2 is uniformly random in a superset of [0, 2�sN ]. But q` < �c < N , so 2�sN
is at least 2�s larger than q`. Thus ⌧2 is statistically close to uniform in {0, 1, . . . , q`�1} (with
2��s error), Pr⌧2 [⌧2 = C (mod q`)] ⇡ 1

q`
. Furthermore, for any �sb, Pr⌧2 [⌧2 ·�sb = C

(mod q`)] ⇡ 1
q`

· gcd(q`,�sb)  1
q`

· q`�1 (since q` doesn’t divide�sb). This is because for
variable ⌧2, the equation ⌧2�sb = C (mod q`) has gcd(q`,�sb) solutions.

In conclusion, the probability that the above equation holds is at most 1q + 2��s  1
2 + 2��s .
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To summarize we showed that the probability to fall in the second case is at most 1
2 + 2��s .

So with probability to fall in the �rst case, and thus solve the strong RSA problem, is at least
1
2 � 2��s .

By a simple argument identical to the one of section 4.4.4, we can also conclude about

the range of the extracted ẽ: se
?
2
⇥
�2�z+�s+µ+1, 2�z+�s+µ+1

⇤
implies �2�z+�s+µ+2  ê 

2�z+�s+µ+2.

4.5.2 Alternative Instantiation of Protocol for RCoprime

Below we propose another interactive ZK protocol for RCoprime. The difference with the above
is that it doesn’t have the limitation of �s +1 < µ and �s < log(N)/2. Also, partial opening of
Acc isn’t needed. This comes with a cost of 2 more group elements in the proof size, 4 more
exponentiations for the prover and 2 more for the veri�er.

1. Prover computes Ca = DHra , Cra = GraHr0a , Cb = GbH⇢b , CB = AccbH⇢B , C⇢B =
G⇢BH⇢0B and sends to the veri�er:

P ! V : Ca, Cb, Cra , CB, C⇢B

2. Prover and Veri�er perform a protocol for the relation:

R((Acc, Ce, Ca, Cra , Cb, CB, C⇢B ), (e, r, ra, r
0
a, b, ⇢b, ⇢B, ⇢

0
B, D,B,�, �)) = 1 iff

Cb = GbH⇢b ^ CB = AccbH⇢B ^ Ce = GeHr ^ Cra = GraHr0a

^C⇢B = G⇢BH⇢0B ^ Ce
aCB = GH� ^ Ce

raC⇢B = G�H�

Let �s be the size of the challenge space, �z be the statistical security parameter and µ the
size of e.

• Prover samples:

rb, re $

⇣
�2�z+�s+µ, 2�z+�s+µ

⌘

r⇢b , r⇢B , rr, rra , rr0a , r⇢0B  $

⇣
�bN/4c 2�z+�s , bN/4c 2�z+�s

⌘

r� , r� $

⇣
�bN/4c 2�z+�s+µ, bN/4c 2�z+�s+µ

⌘

and computes:

↵1 = GrbHr⇢b , ↵2 = AccrbHr⇢B , ↵3 = GreHrr , ↵4 = GrraHrr0a ,

↵5 = Cre
a Hr� , ↵6 = Cre

raG
r�Hr� , ↵7 = Gr⇢BH

r⇢0
B

P ! V : (↵1,↵2,↵3,↵4,↵5,↵6,↵7)

• Veri�er samples the challenge c {0, 1}�s
V ! P : c
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• Prover computes the response:

sb = rb � cb, se = re � ce

s⇢b = r⇢b � c⇢b, s⇢B = r⇢B � c⇢B, sr = rr � cr, sra = rra � cra, sr0a = rr0a � cr0a,

s⇢0B = r⇢0B � c⇢0B, s� = r� + c(era + ⇢B), s� = r� + c(er0a + ⇢0B)

P ! V : (sb, se, s⇢b , s⇢B , sr, sra , sr0a , s⇢0B , s� , s�)

• Veri�er checks if:

↵1
?
= Cc

bG
sbHs⇢b , ↵2

?
= Cc

BAcc
sbHs⇢B , ↵3

?
= Cc

eG
seHsr , ↵4

?
= Cc

raG
sraHsr0a ,

↵5
?
= Cse

a Hs�GcC�c
B , ↵6

?
= Cse

raH
s�Gs�C�c

⇢B , ↵7
?
= Cc

⇢BG
s⇢BH

s⇢0
B ,

se
?
2
h
�2�z+�s+µ+1, 2�z+�s+µ+1

i

Coprime2 protocol

• On common reference string crs = (Z⇤
N , G,H)

• Prove(crs, (Ce,Acc), (e, r, (D, b))) :

1. samples ra, ra0 , ⇢b, ⇢B, ⇢B0  $ (�bN/4c , bN/4c) and computes Ca = DHra , Cra =
GraHr0a , Cb = GbH⇢b , CB = AccbH⇢B , C⇢B = G⇢BH⇢0B .

2. Computes the non-interactive version of the above protocol
rb, re $

�
�2�z+�s+µ, 2�z+�s+µ

�

r⇢b , r⇢B , rr, rra , rr0a , r⇢0B  $

�
�bN/4c 2�z+�s , bN/4c 2�z+�s

�

r� , r� $

�
�bN/4c 2�z+�s+µ, bN/4c 2�z+�s+µ

�

↵1 = GrbHr⇢b ,↵2 = AccrbHr⇢B ,↵3 = GreHrr ,↵4 = GrraHrr0a ,↵5 =
Cre
a Hr� ,↵6 = Cre

raG
r�Hr� ,↵7 = Gr⇢BH

r⇢0
B

c H(↵1,↵2,↵3,↵4,↵5,↵6,↵7, Ce, Acc)

sb = rb�cb, se = re�ce, s⇢b = r⇢b�c⇢b, s⇢B = r⇢B �c⇢B, sr = rr�cr, sra = rra�
cra, sr0a = rr0a � crra , s⇢0B = r⇢0B � c⇢0B, s� = r� + c(era+ ⇢B), s� = r�+ c(er0a+ ⇢

0
B)

Returns⇡  (Ca, Cra , Cb, CB, C⇢B ,↵1,↵2,↵3,↵4, csb, se, s⇢b , s⇢B , sr, sra , sr0a , s⇢0B , s� , s�)

• VerProof(crs, (Ce, Acc),⇡) : returns 1 iff ↵1 = Cc
bG

sbHs⇢b ^ ↵2 = Cc
BAcc

sbHs⇢B ^ ↵3 =
Cc
eG

seHsr ^ ↵4 = Cc
raG

sraHsr0a ^ ↵5 = Cse
a Hs�GcC�c

B ^ ↵6 = Cse
raH

s�Gs�C�c
⇢B ^ ↵7 =

Cc
⇢BG

s⇢BH
s⇢0

B ^ ^se 2
⇥
�2�+�s+µ+1, 2�+�s+µ+1

⇤

Figure 4.13: Our second Coprime2 protocol instantiation.
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Correctness. Here we show the correctness of the protocol.

↵1 = GrbHr⇢b = Gsb+cbHs⇢b+crb = GsbHs⇢b (GbH⇢b)c

= GsbHs⇢bCc
b

↵2 = AccrbHr⇢B = Accsb+cbHs⇢B+c⇢B = AccsrbHs⇢B (AccbH⇢B )c

= AccsbHs⇢BCc
B

↵3 = GreHrr = Gse+ceHsr+cr = GseHsr(GeHr)c

= GseHsrCc
e

↵4 = GrraHrr0a = Gsra+craHsr0a
+cr0a = GsraHsr0a (GraHr0a)c

= GsraHsr0aCc
ra

↵5 = Cre
a Hr� = Cse+ce

a Hs��c(era+⇢B) = Cse
a Hs� (DeHera)cH�c(era+⇢B)

= Cse
a Hs� (DeH�⇢B )c = Cse

a Hs� (GAcc�bH�⇢B )c =

= Cse
a Hs�GcC�c

B

↵6 = Cre
raG

r�Hr� = Cse+ce
ra Gs��c(era+⇢B)Hs��c(er0a+⇢

0
B)

= Cse
raG

s�Hs�(GraHr0a)ceG�c(era+⇢B)H�c(er0a+⇢
0
B) = Cse

raG
s�Hs�G�c⇢BH�c⇢0B

= Cse
raG

s�Hs�C�c
⇢B

↵7 = Gr⇢BH
r⇢0

B = Gs⇢B+c⇢BH
s⇢0

B
+c⇢0B = Gs⇢BH

s⇢0
B (G⇢BH⇢0B )c

= Gs⇢BH
s⇢0

BCc
⇢B

Security.

Theorem 12. Let Z⇤
N be an RSA group where strong-RSA assumption holds, then the above

protocol is an honest-veri�er zero knowledge and knowledge sound protocol for RCoprime.

Proof. Zero-Knowledge can be proven with standard techniques, similar to the ones in the proof
of theorem 6 and is therefore omitted.
For the knowledge soundness, let an adversary of the knowledge soundness A that is able

to convince the veri�er V with a probability at least ✏. We will construct an extractor E that
extracts the witness (e, r, r2, r3,�, �). Using rewinding E gets two accepted transcripts

(Ca, Cb, Cra , CB, C⇢B ,↵1,↵2,↵3,↵4,↵5,↵6,↵7, c, sb, se, s⇢b , s⇢B , sr, sra , sr0a , s⇢0B , s� , s�)

(Ca, Cb, Cra , CB, C⇢B ,↵1,↵2,↵3,↵4,↵5,↵6,↵7, c
0, s0b, s

0
e, s

0
⇢b , s

0
⇢B , s

0
r, s

0
ra , s

0
r0a
, s0⇢0B

, s0� , s
0
�)

on two different challenges c and c0. E aborts if it cannot get two such transcripts (abort1).
We denote �c := c0 � c,�sb := sb � s0b,�se := se � s0e,�s⇢b := s⇢b � s0⇢b ,�s⇢B :=

s⇢B �s0⇢B ,�sr := sr�s0r,�sra := sra�s0ra ,�sr0a := sr0a�s0r0a ,�s⇢0B := s⇢0B �s0⇢0B
,�s� :=

s� � s0� ,�s� := s� � s0� then

C�c
b = G�sbH�s⇢b ) Cb = ±Gb̂H ⇢̂b (4.9)

C�c
B = Acc�sbH�s⇢B ) CB = ±Accb̂H ⇢̂B (4.10)
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C�c
e = G�seH�sr ) Ce = ±GêH r̂ (4.11)

C�c
ra = G�sraH�sr0a ) Cra = ±Gr̂aH r̂0a (4.12)

1 = C�se
a H�s�G��cC�c

B (4.13)

1 = C�se
ra H�s�G�s�C�c

⇢B (4.14)

C�c
⇢B = G�s⇢BH

�s⇢0
B ) C⇢B = ±G⇢̂BH ⇢̂0B (4.15)

de�ne the (possibly rational) numbers b̂ := �sb
�c , ⇢̂b :=

�s⇢b
�c , ê := �se

�c , r̂ := �sr
�c , r̂a := �sra

�c ,

r̂0a :=
�sr0a
�c , ⇢̂B :=

�s⇢B
�c , ⇢̂

0
B :=

�s⇢0
B

�c .
E aborts in case�c doesn’t divide: �sb and�s⇢b(abort 2a),�se and�sr(abort 2b),�sra

and�sr0a(abort 2c),�s⇢B and�s⇢0B (abort 2d). And �nally, E aborts if�c doesn’t divide�s⇢B
(abort 2e). Therefore, after these aborts didn’t happen we can infer the equivalent equalities on
the right of equations 4.9,4.11,4.12,4.15 and 4.10.

If we replace equations 4.12 and 4.15 in equation 4.14 we get 1 =
⇣
±Gr̂aH r̂0a

⌘�se
H�s� ·

·G�s�
⇣
±G⇢̂BH ⇢̂0B

⌘�c
or 1 = (±1)�se(±1)�cGr̂a�se+⇢̂B�c+�s�H r̂0a�se+⇢̂0B�c+�s� . Since

G,H, 1 are quadratic residues then (±1)�se(±1)�c = 1, hence 1 = Gr̂a�se+⇢̂B�c+�s� ·
·H r̂0a�se+⇢̂0B�c+�s� . Then under the DLOG assumption r̂a�se+ ⇢̂B�c+�s� = 0 = r̂0a�se+

⇢̂0B�c+�s� , which gives us that

�s� = �r̂a�se � ⇢̂B�c (4.16)

Finally, we replace equations 4.10 and 4.16 in equation 4.13 we get

1 = C�se
a H�r̂a�se�⇢̂B�cG��c

⇣
±Accb̂H ⇢̂B

⌘�c
or 1 = (±1)�cC�se

a Accb̂�cG��cH�r̂a�se

or
⇣
±Accb̂G�1

⌘�c
=
�
C�1
a Hra

��se . But as noted above �c divides �se so ±Accb̂G�1 =

±
�
C�1
a Hra

�ê ) Accb̂G�1 = ±
�
C�1
a H r̂a

�ê )
�

Ca
H r̂a

�ê
Accb̂ = ±G. We discern two cases:

•
�

Ca
H r̂a

�ê
Accb̂ = +G: Then E sets D̃  Ca

H r̂a , ẽ  ê := �se
�c , r̃  r̂ := �sr

�c and b̃  b̂ :=
�sb
�c

•
�

Ca
H r̂a

�ê
Accb̂ = �G: Then ê should be odd otherwise if ê = 2⇢ then G = �

�
Ca
H r̂a

�2⇢
Accb̂

would be a non-quadratic residue. So E sets D̃  � Ca
H r̂a , ẽ ê := �se

�c , r̃  r̂ := �sr
�c and

b̃ b̂ := �sb
�c . It is clear that D̃

ẽAccb̃ = G.

Finally the E outputs (ẽ, r̃, D̃, b̃).
Now we show that the probability the extractor terminates with outputting a valid witness

is O(✏). If the extractor does not abort then it clearly outputs a valid witness (under factoring
assumption). For the �rst abort, with a standard argument it can be shown that the extractor is able
to extract two accepting transcripts with probability O(✏) (for the probabilistic analysis we refer
to [85]). Thus Pr[abort1] = 1� O(✏). For the aborts abort 2a, abort 2b, abort 2c and abort 2d
they happen with negligible probability ( 2

1�2��s+1Pr[B solves sRSA] each, for any PPT
adversaryB) under the strongRSA assumption according to lemma 6. For abort 2ewe show in the
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lemma below that in case it happens an adversary can solve the strong RSA problem. Putting them
together the probability of success of E is at leastO(✏)�

⇣
8

1�2��s+1 + 1
⌘
Pr[B solves sRSA] =

O(✏)� negl(�s).

Lemma 8. If�c divides �sb then it also divides �⇢B under the strong RSA assumption.

Proof. An adversary to the strong RSA assumption receives H 2 QRN and does the following:
set G = H⌧ for ⌧  $ [0, 2�sN2] and send (G,H) to the adversary A which outputs a proof
⇡Coprime2. Then we rewind to get another successful proof ⇡0Coprime2 and we use the extractor as
above to get C�c

B = Acc�sbH�s⇢B .
Assume that �c - �⇢B . Since �c divides �sb then there is a k such that k ·�c = �sb.

Then C�c
B = Acck·�cH�s⇢B )

�
CBAcc

�k
��c

= H�s⇢B . From assumption �c doesn’t
divide �⇢B , so gcd(�c,�⇢B) = g for a g 6= �c,�⇢B . Hence, there are there are �, 
such that � · �c +  · �⇢B = g. Thus, Hg = H�·�c+ ·�⇢B = H��c

�
CBAcc

�k
� �c

=
⇣
H�C 

BAcc
� k

⌘�c
so H = ±

⇣
H�C 

BAcc
� k

⌘�c
g . Now since H and Acc are quadratic

residues (and so is CB) we get that H =
⇣
H�C 

BAcc
� k

⌘�c
g and thus

⇣
H�C 

BAcc
� k, �c

g

⌘

is a solution to the strong RSA problem.

By a simple argument identical to the one of section 4.4.4, we can also conclude about

the range of the extracted ẽ: se
?
2
⇥
�2�z+�s+µ+1, 2�z+�s+µ+1

⇤
implies �2�z+�s+µ+2  ê 

2�z+�s+µ+2.

4.6 A CP-SNARK for Set Membership in Bilinear Groups

In this section we propose another CP-SNARK, called MemCPVC, for the set membership
relation that works in bilinear groups. Unlike the schemes of Section 4.4, the CP-SNARK given
in this section does not have short parameters; speci�cally it has a CRS linear in the size of
the sets to be committed. On the other hand, it enjoys other features that are not satis�ed by
our previous schemes (nor by other schemes in the literature): �rst, it works solely in Bilinear
Groups without having to deal with RSA groups; second, it allows to commit the set in an hiding
manner and, for the sake of soundness, does not need to be opened by the adversary. This is
possible thanks to the fact that the set is committed in a way that (under a knowledge assumption)
guarantees that the prover knows the set.
More in detail, MemCPVC is a CP-SNARK for set membership where set elements are

elements from the large �eld F = Zq where q is the order of bilinear groups. So Delm = F.
In terms of set it supports all the subsets of 2Delm of cardinality bounded by n, Dset = {S 2
2Delm : #S  n}, which we denote by Sn, # symbol denotes the cardinality of a set. So S has
elements in F and is a subset of Sn.

4.6.1 Preliminaries and Building Blocks

Bilinear Groups. For ease of exposition we present our results with Type-1 groups where
we assume that G1 = G2. Our results are under the (` + 1)d-Strong Dif�e Hellman and the

86



CHAPTER 4. ZERO-KNOWLEDGE PROOFS FOR SET MEMBERSHIP OF SINGLETONS

(d, `)-Extended Power Knowledge of Exponent assumptions, for which we refer the reader to
[226].

A Polynomial-Pedersen Type-Based Commitment Scheme. First we present PolyCom, a
type-based commitment scheme which was introduced in [61] extracted from the veri�able
polynomial delegation scheme of [226]. The scheme has two types: one for `-variate polynomials
f : F` ! F over F of variable degree at most d, and one which is a standard Pedersen
commitment for �eld elements. Let W`,d be the set of all multisets of {1, . . . , `} where the
cardinality of each element is at most d. The scheme is described in �gure 4.14.

PolyCom scheme

• Setup(1�, `, d) : samples a bilinear group of order q, bp := (q, g,G1,GT , e) BilGen(1�),
samples ↵,�, s1, . . . , s`  F. Computes prk  

n
g
Q

i2W si : W 2W`,d

o
and prk↵  

n
g↵·

Q
i2W si : W 2W`,d

o
. Finally samples an s`+1 $F and computes h gs`+1 and h↵.

Return ck (bp, prk, prk↵, g↵, g� , h, h↵, h�)

• Commit(ck, tF[s], f) : parses ck := (bp, prk, prk↵, g↵, g� , h, h↵, h�) and uses prk :=n
g
Q

i2W si : W 2W`,d

o
and prk↵ :=

n
g↵·

Q
i2W si : W 2W`,d

o
to compute gf(s) and

g↵·f(s) respectively. Then samples a random rf  $F and computes cf,1  gf(s)hrf and
cf,2  g↵·f(s)(h↵)rf

Return (c, o) ((cf,1, cf,2), rf )

• Commit(ck, tq, y) : parses ck := (bp, prk, prk↵, g↵, g� , h, h↵, h�) and samples r $F. Com-
putes cy,1  gyhr and cy,2  (g�)y(h�)r and return (c, o) := ((cy,1, cy,2), r).

• VerCommit(ck, tF[s], c, f, o) : parses ck := (bp, prk, prk↵, g↵, g� , h, h↵, h�) and uses prk :=n
g
Q

i2W si : W 2W`,d

o
to compute gf(s). Parses c := (cf,1, cf,2). Output 1 iff cf,1 =

gf(s)ho ^ e(cf,1, g↵) = e(cf,2, g).

• VerCommit(ck, tq, c, y, o) : parses ck := (bp, prk, prk↵, g↵, g� , h, h↵, h�). Parses c :=
(cy,1, cy,2) Output 1 iff cy,1 = gyhr ^ e(cy,1, g�) = e(cy,2, g).

Figure 4.14: PolyCom Commitment Scheme

Theorem 13. Under the (`+ 1)d-Strong Dif�e Hellman and the (d, `)-Extended Power Knowl-
edge of Exponent assumptions PolyCom is an extractable trapdoor commitment scheme.

For the proof we refer to [61, 226].

Input-Hiding CP-SNARK for Polynomial Evaluation The main building block of our main
protocol is a CP-SNARK CPPolyEval for the type-based commitment PolyCom. Loosely speaking
the idea is to commit to the input t and the output y of a polynomial (with a Pedersen commitment),
further commit to the polynomial f itself (with a polynomial commitment) and then prove that
the opening of the committed polynomial evaluated on the opening of the committed input
gives the committed output. The relation of the protocol is RPolyEval((tk)k2[`], f, y)) = 1 iff
f(t1, . . . , t`) = y:
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R = (ck, RPolyEval) where R is over

(x,w) = ((x, c), (u, o,!)) =
�
(?, (cy, (ctk)k2[`], cf )) , ((y, (tk)k2[`], f), (ry, (rtk)k2[`], rf ),?)

�

We will present a CP-SNARK for this relation, CPPolyEval, in section 4.6.3. CPPolyEval is based
on a similar protocol for polynomial evaluation given in [61] which was in turn based on the
veri�able polynomial delegation scheme of zk-vSQL [226]. In those protocols, however, the
input t is public whereas in ours we can keep it private and committed.

Range Proof CP-NIZK.We make use of CPrange, a CP-NIZK for the following relation on
PedCom commitments c and two given integers A < B:

Rrange ((ce, A,B), (e, rq)) = 1 iff c = gehrq ^ A < eq < B

CPrange can have various instantiations such as Bulletproofs [52].

Multilinear Extensions of vectors. Let F be a �eld and n = 2`. The multilinear extension of a
vector a = (a0, . . . , an�1) in F is a polynomial fa : F` ! F with variables x1, . . . , x` de�ned
as

fa(x1, . . . , x`) =
n�1X

i=0

ai ·
Ỳ

k=1

selectik(xk)

where i`i`�1 . . . i2i1 is the bit representation of i and selectik(xk) =

(
xk, if ik = 1

1� xk, if ik = 0
A property of Multilinear extension of a is that fa(i1, . . . , i`) = ai for each i 2 [n].

The EDRAX Vector Commitment SchemeWe describe the EDRAX Vector Commitment:

De�nition 27. Let a bilinear group bp = (q, g,G1,GT , e)  RG(1�) generated by a group
generator. Let n = 2` be the length of the vector and 2[`] be the powerset of [`] = {1, . . . , `}

• KeyGen(1�, n)! (prk, vrk, upk0, . . . , upkn�1) : samples random s1, . . . , s` $F and com-
putes prk 

n
g
Q

i2S si : S 2 2[`]
o
and vrk {gs1 , . . . , gs`}. For each i = 0, . . . , n�1 com-

putes the update key upki  
n
g
Qt

k=1 selectik (sk) : t = 1, . . . , `
o
:= {upki,t : t = 1, . . . , `}.

• Com(prk, a0, . . . , an�1) ! diga : let a := (a0, . . . , an�1). Computes diga  gfa(s1,...,s`)

where fa is the multilinear extension of vector a as described above.

• Prove(prk, i,a)! (ai,⇡i) : let x = (x1, . . . , x`) be an `-variable. Compute q1, . . . , q` such
that fa(x) � fa(i1, . . . , i`) =

P`
k=1(xk � ik)qk(x) and ⇡i  

�
gq1(s), . . . , gq`(s)

 
(where

gqi(s) is evaluated by using prk :=
n
g
Q

i2S si : S 2 2[`]
o
without s).

• Ver(vrk, dig, i, a,⇡) ! b : parse ⇡ := (w1, . . . , w`) and outputs 1 iff e(dig/ga, g) =Q`
k=1 e(g

sk�ik , wk)

• UpdateCom(dig, i, �, upki) ! dig0 : computes dig0  dig ·
h
g
Q`

k=1 selectik (sk)
i�

:= dig ·
⇥
upki,`

⇤�
= g(ai+�)·

Q`
k=1 selectik (sk)+

Pn�1
j=0,j 6=i aj ·

Q`
k=1 selectjk (sk)
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• UpdateCom(⇡, i, a0, upki) ! ⇡0 : Parses ⇡ := (w1, . . . , w`) and computes w0
k  wk ·

g�i(s) for each k = 1, . . . , `, where �k(x) are the delta polynomials computed by the
DELTAPOLYNOMIALS algorithm (for more details about the algorithm and its correctness
we refer to [73]).

The above scheme is proven in [73] to satisfy the Soundness property under the q-Strong
Bilinear Dif�e-Hellman assumption.

The type-based commitment scheme of MemCPVC. We de�ne the type-based commitment
CEdraxPed for our CP-SNARKMemCPVC. We recall we need a commitment that allows one to
commit to both elements and sets. We build this based on a hiding variant of EDRAX Vector
Commitment [73], which in turn relies on a polynomial commitment. Therefore, we use a
special case of PolyCom for polynomials of maximum variable degree d = 1. Let ` := dlog(n)e
and 2[`] be the powerset of [`] = {1, ..., `} then W`,1 = 2[`]. Furthermore, for any n0  n
let L : Sn0 ! Fn0 be a function that maps a set of cardinality n0 to its corresponding vector
according to an ordering. The description of the scheme can be found in �gure 4.15. Essentially
the idea is to take the set, �x some ordering so that we can encode it with a vector, and then
commit to such vector using the vector commitment of [73], which in turn commits to a vector
by committing to its multilinear extension polynomial.

CEdraxPed scheme

• Setup(1�, `) : executes ck PolyCom.Setup(1�, `, 1)

• Commit(ck, tS , S) : computes vS  L(S) and then the corresponding multilinear extension
of vS, fvS . Returns (c, o) PolyCom.Commit(ck, tF[s], fvS).

• Commit(ck, tq, y) : returns (c, o) PolyCom.Commit(ck, tq, y)

• VerCommit(ck, tS , c, S, o) : computes vS  L(S) and then the corresponding multilinear
extension of vS, fvS . Outputs PolyCom.VerCommit(ck, tF[s], c, fvS , o).

• VerCommit(ck, tq, c, y, o) : outputs PolyCom.VerCommit(ck, tq, c, y, o).

Figure 4.15: The CEdraxPed Commitment Scheme.

4.6.2 CP-SNARK for Set membership using EDRAX Vector Commitment

Here we present a CP-SNARK for set membership that uses a Vector Commitment - an EDRAX
[73] variant - to commit to a set. The idea is to transform a set to a vector (using for example
lexicographical order) and then commit to the vector with a vector commitment. Then the set
membership is proven with a zero knowledge proof of opening of the corresponding position of
the vector. However to preserve zero knowledge we additionally need to hide the position of the
element. For this we construct a zero knowledge proof of knowledge of an opening of a position
that does not give out the position. Finally, since the position is hidden we additionally need to
ensure that the prover is not cheating by providing a proof for a position that exceeds the length
of the vector. For this we, also, need a proof of range for the position, i.e. that i < n.

In this section the domain of the elements is a �eld, Delm := F, and the domain of the set is
all the subsets of 2Delm of cardinality bounded by n, Dset = {S 2 2Delm : #S  n}, which we
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denote by Sn (the# symbol denotes the cardinality of a set). So S has elements in F and is a
subset of Sn.

The type-based commitment of our scheme is CEdraxPed (�g. 4.15) that is presented in the
previous section, and the relation is

R = (ck, RVCmem) where R is over

(x,w) = ((x, c), (u, o,!)) =

=
��
#S, (cy, (cik)k2[`], cS)

�
,
�
(y, (ik)k2[`], S), (ry, (rik)k2[`], rS),?

��

RVCmem(#S,
�
y, (ik)k2[`], S

�
) = 1 iff y = L(S)[i] ^ i < #S ^ i =

P`
k=1 ik2

k�1

Note that in the above the prover should normally give exactly ` = dlog(#S)e commitments.
In case ` < dlog(#S)e the position is not fully hiding since it is implicit that i < 2`�1 so the
veri�er gets a partial information about the position.

For this we will compose a CP-SNARK CPPolyEval and a CP-NIZK CPrange for the relations
RPolyEval((ik)k2[`], f, y)) = 1 iff f(i1, . . . , i`) = y and Rrange(T, (ik)k2[`]) = 1 iff i < T
respectively and the commitment scheme CEdraxPed. So CPVCmem is a conjuction of the former,
where the common commitments are (cik)k2[`].

CP-SNARK for RVCmem

• KeyGen(ck, RVCmem) : computes (ek1, vk1)  CPPolyEval.KeyGen(ck, RPolyEval) and
(ek2, vk2) CPrange.KeyGen(ck, Rrange)

Return (ek, vk) ((ek1, ek2) , (vk1, vk2))

• Prove(ek,#S, (cy, (cik)k2[`], cS), (y, (ik)k2[`], S), (ry, (rik)k2[`], rS),?) : Parse ek :=
(ek1, ek2) and compute ⇡1  CPPolyEval.Prove

�
ek1,?, (cy, (cik)k2[`]), cS), (y, (ik)k2[`], S),

(ry, (rik)k2[`], rS),?
�
.

Parse ck := (bp, prk, prk↵, g↵, g� , h, h↵, h�) and further bp := (q, g,G1,GT , e) to get (g, h),
then compute i 

P`
k=1 ik2

k�1 and ri  
P`

k=1 rik2
k�1 and the corresponding commitment

ci  gihri . Notice that ci is a commitment to i with o = ri.

Compute ⇡2  CPrange.Prove (ek1, (1,#S), ci, i, ri,?)

Return ⇡ = (⇡1,⇡2)

• VerProof(vk,#S, (cy, (cik)k2[`], cS),⇡) : parses vk := (vk1, vk2) and ⇡ := (⇡1,⇡2). Then
computes homomorhically ci,1  

Q`
k=1(cik,1)

2k�1 and ci,2  
Q`

k=1(cik,2)
2k�1 .

Return 1 iff
CPPolyEval.VerProof(vk1,?, (cy, (cik)k2[`]), cS),⇡1)^
CPrange.VerProof(vk2, (1,#S), ci,?).

Figure 4.16: MemCPVC.

Theorem 14. Let CPPolyEval and CPrange be zero knowledge CP-SNARKs for the relations
RPolyEval andRrange respectively under the commitment scheme PolyCom then the above scheme
is a zero knowledge CP-SNARK for the relationRVCmem and the commitment scheme CEdraxPed.
Further it is a CP-SNARK for Rmem under the same commitment scheme.
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Proof. Zero Knowledge comes directly from the zero knowledge of CPPolyEval and CPPolyEval.
For Knowledge Soundness, let an adversary A(R, crs, auxR, auxZ) outputting (x, c) :=�

#S, (cy, (cik)k2[`], cS)
�
and ⇡ such that VerProof(vk,#S, (cy, (cik)k2[`], cS),⇡) = 1. We

will construct an extractor E that on input (R, crs, auxR, auxZ) outputs a valid witness w :=�
(y, (ik)k2[`], S), (ry, (rik)k2[`], rS),?

�
.

E uses the extractors of EPolyEval, Erange of CPPolyEval and CPrange. EPolyEval outputs (y,
(ik)k2[`], f), (ry, (rik)k2[`], rf ) such that f(i1, . . . , i`) = y ^ PolyCom.VerCommit(ck, tF[s],

cS , f, rf ) = 1^ PolyCom.VerCommit(ck, tq, cy, y, ry) = 1
V`

k=1 PolyCom.VerCommit(ck,
tq, cik , ik, rik) = 1. Further, from the Extended Power Knowledge of Exponent assumption
we know that f is an `-variate polynomial of maximum variable degree 1. Therefore it cor-
responds to a multilinear extension of a unique vector vS, which is ef�ciently computable.
The extractor computes the vector vS from f and the corresponding set S. It is clear that,
since f is the multilinear extension of the S and PolyCom.VerCommit(ck, tF[s], cS , f, rf ) =
1, CEdraxPed.VerCommit(ck, tS , cS , S, rf ) = 1. CEdraxPed.VerCommit(ck, tq, cy, y, ry) =

1
V`

k=1 CEdraxPed.VerCommit(ck, tq, cik , ik, rik) = 1 is straightforward from the de�nition of
the CEdraxPed commitment scheme for �eld elements type.

E uses the extractor of the commitment schemePolyCom, EPolyCom, that outputs for each k =
1, . . . , ` ik, rik such that cik,1 = gikhrik^e(cik,1, g�) = e(cik,2, g) orCEdraxPed.VerCommit(ck,
tq, cik , rik) = 1. Erange outputs (i, ri) such that i < #S^PolyCom.VerCommit(ck, tq, ci, i, ri) =

1 which means that ci,1 = gihri . Since the proof ⇡ is veri�ed then ci,1 =
Q`

k=1(cik,1)
2k�1 or

gihri = g
P`

k=1 ik2
k�1

h
P`

k=1 rik2
k�1
. From the binding property of the Pedersen commitment

we get that i =
P`

k=1 ik2
k�1 and ri =

P`
k=1 rik2

k�1.
Putting them together the extractor outputs

�
(y, (ik)k2[`], S), (ry, (rik)k2[`], rf ),?

�
such

that CEdraxPed.VerCommit(ck, tq, cy, ry) = 1
V`

i=1 CEdraxPed.VerCommit(ck, tq, cik , rik) =
1^
CEdraxPed.VerCommit(ck, tS , cf , S, rf ) = 1 and further y = L(S)[i] ^ i < #S ^ i =P`

k=1 ik2
k�1. It is straightforward that y = L(S)[i] ^ i < #S means that y 2 S which

leads to Rmem(y, S) = 1.

4.6.3 Input-hiding CP-SNARKs for Polynomial Evaluation

Here, we present an instantiation of a a zero knowledge CP-SNARK for the relation RPolyEval

presented in section 4.6.1.
To give an intuition of the protocol we recall that zk-vSQL uses lemma 9 to prove the correct

evaluation of the polynomial, that we recall below.

Lemma 9 ([170]). Let f : F` ! F be a polynomial of variable degree d. For all t :=
(t1, . . . , t`) 2 F` there exist ef�ciently computable polynomials q1, . . . , q` such that: f(z) �
f(t) =

P`
i=1(zi � ti)qi(z).

With this one can verify in time linear in the number of variables that f(t) = y by checking
iff gf(t)g�y =

Q`
i=1 e(g

si , wi), given the values gf(s), {gsi}`i=1, {wi = gqi(s)}`i=1 We are
interested in the committed values of f, y = f(t) and t, cf , cy, ct respectively, that hide them.
For this we will use instead the equation below for veri�cation:
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�
f(z) + rfz`+1

�
�
�
f(t) + ryz`+1

�
=

X̀

k=1

(zk � tk)qk(z) + z`+1(rf � ry) =

X̀

k=1

(zk � tk)(qk(z) + rkz`+1) + z`+1

 
rf � ry �

X̀

k=1

rk(zk � tk)

!
=

X̀

k=1

[zk � (tk + rtkz`+1)] · [qk(z) + rkz`+1]+

+ z`+1

 
rf � ry �

X̀

k=1

rk(zk � tk) +
X̀

k=1

rtk [qk(z) + rkz`+1]

!

The equation indicates us how to construct the protocol which we present in �gure 4.17.
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CP-SNARK for RPolyEval

• KeyGen(ck, RPolyEval) : Parse ck := (bp, prk, prk↵, g↵, g� , h, h↵, h�) and compute vrk  
{gs1 , . . . , gs`}.
Return (ek, vk) 

� �
bp, prk, prk↵, g↵, g� , h, h↵, h�

�
,
�
bp, vrk, g↵, g� , h

� �

• Prove(ek,?, (cy, (ctk)k2[`], cf ), (y, (tk)k2[`], f), (ry, (rtk)k2[`], rf ),?) : Let

ck := (bp, prk, prk↵, g↵, g� , h, h↵, h�)

:=
⇣
(q, g,G1,GT , e),

n
g
Q

i2W si : W 2W`,d

o
, :=

n
g↵·

Q
i2W si : W 2W`,d

o
, g↵, g� , gs`+1 , g↵s`+1 , g�s`+1

⌘

and

1. Sample r1, ..., r`  F and compute q1, . . . , q` such that

(f(z) + rfz`+1)� (f(t) + ryz`+1) =

=
X̀

k=1

[zk � (tk + rtkz`+1)] · [qk(z) + rkz`+1]+

+ z`+1

 
rf � ry �

X̀

k=1

rk(zk � tk) +
X̀

k=1

rtk [qk(z) + rkz`+1]

!

By using prk :=
n
g
Q

i2W si : W 2W`,d

o
and h compute wk = gqk(s)+rks`+1 for each

k = 1, . . . , ` and w`+1 = grf�ry�
P`

k=1 rk(sk�tk)+
P`

k=1 rtk [qk(s)+rks`+1]

2. By using prk↵ :=
n
g↵·

Q
i2W si : W 2W`,d

o
and h↵ compute w0

k = g↵·(qk(s)+rks`+1)

for each k = 1, . . . , ` and w0
`+1 = g↵·(rf�ry�

P`
k=1 rk(sk�tk)+

P`
k=1 rtk [qk(s)+rks`+1])

Return ⇡ = {w1, ..., w`, w`+1, w0
1, ..., w

0
`, w

0
`+1}

• VerProof(vk,?, (cy, (ctk)k2[`], cf ),⇡) : Parse ⇡ := {w1, ..., w`, w`+1, w0
1, ..., w

0
`, w

0
`+1},

vk :=
�
bp, vrk, g↵, g� , h

�
and cy := (cy,1, cy,2), ctk := (ctk,1, ctk,2) for each k = 1, . . . , `]

and cf := (cf,1, cf,2)

Return 1 iff

1. e(cy,1, g�) = e(cy,2, g)

2. e(cf,1, g↵) = e(cf,2, g)

3. e(ctk,1, g�) = e(ctk,2, g) for all k = 1, ..., `

4. e(wk, g↵) = e(w0
k, g) for all k = 1, ..., `, `+ 1

5. e
�
cf · c�1

y , g
�
=
Q`

k=1 e
�
gskc�1

tk
, wk

�
· e (gs`+1 , w`+1)

Figure 4.17: Our CP-SNARK instantiation for the RPolyEval relation.
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Theorem 15. Under the (`+1)d-Strong Dif�e Hellmann and the (d, `)-Extended Power Knowl-
edge of Exponent assumptions, CPPolyEval is a Knowledge Extractable CP-SNARK for the
relation RPolyEval and the commitment scheme PolyCom.

Proof. Below is a proof sketch, which however is quite similar to the one of CPpoly in [61].

Knowledge Soundness. The proof comes directly from Evaluation Extractability of vSQL (see
[226]) with the difference that here tk for each k 2 [`] should also be extracted. However, its
extraction is straightforward from the extractability of the commitment scheme.

Zero-Knowledge. Consider the following proof simulator algorithm
Sprv(td, cf , (ctk)k2[`], cy):

• Use td to get ↵ and s`+1.

• For k = 1 to `, sample ⇠k $Zq and sets wk  g⇠k .

• Compute w`+1 such that e
⇣
cf,1 · c�1

y,1, g
⌘
=
Q`

k=1 e
⇣
gskc�1

tk,1
, wk

⌘
· e (gs`+1 , w`+1) holds.

That is: w`+1  
⇣
cf · c�1

y ·
Q`

k=1 (g
�skctk,1)

⇠k
⌘s�1

`+1

• Use ↵ to compute w0
k = wa

k for all k 2 [`+ 1]

• Return {w1, ..., w`, w`+1, w0
1, . . . , w

0
`, w

0
`+1}

It is straightforward to check that proofs created by Sprv are identically distributed to the
ones returned by CPPolyEval.Prove. (wk)k2[`]’s are uniformely distributed in both cases. For
w`+1 there is a function W such that w`+1 = W (cf,1, cy,1, vk, (ctk,1)k2[`], (wk)k2[`]) in both
cases. Since the inputs are either identical or identically distributed, the outputs w`+1 are also
identically distributed in the case of of Sprv and CPPolyEval.Prove.

4.7 Applications

In this section, we discuss applications of our solutions for proving set (non-)membership in a
succinct and modular way.

As one can note, in our solutions the set of committed elements is public and not hidden to
the veri�er. Nevertheless, our solutions can still capture some applications in which the “actual”
data in the set is kept private. This is for example the case of anonymous cryptocurrencies
like Zerocash. In this scenario, the public set of elements to be accumulated, U , is derived
by creating a commitment to the underlying data, X , e.g., u = COMM(x). To support this
setting, we can use our solutions for arbitrary elements (so supporting virtually any commitment
scheme). Interestingly, though, we can also use our (more ef�cient) solution for sets of primes
if commitments are prime numbers. This can be done by using for example the hash-to-prime
method described in Section 4.4.1 or another method for Pedersen commitments that we explain
below in the context of Zerocash.
We now discuss concrete applications for which our constructions are suitable, both for

set-membership and set non-membership. In particular these are applications in which: (1) the
prover time must be small; (2) the size of the state (i.e.: the accumulator value and commitments)
must be small (potentially constant); (3) the veri�er time should be small; and (4) the time to
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update the accumulator—adding or deleting an element—should be fast. As we discuss below,
our RSA-based constructions are suitable candidate for settings with these constraints.

Zerocash. Zerocash [24] is a UTXO-type (Unspent Transaction Output) cryptocurrency protocol
which extends Bitcoin with privacy-preserving (shielded) transactions. When performing a
shielded transaction users need to prove they are spending an output note from a token they
had previously received. Users concerned with privacy should not reveal which note they are
spending, else their new transaction could be linked to the original note that contained the note
commitment. This would reveal information both to the public and the sender of the initial
transaction, and hence partially reveal the transaction graph. In order to keep transactions
unlinkable, the protocol uses zkSNARKs to prove a set membership relation, namely that a note
commitment is in a publicly known set of “usable” note commitments.
Zcash is a full-�edged digital currency using Zerocash as the underlying protocol. In its

current deployment, Sapling [132], it employs Pedersen commitments of the notes and makes
a zero-knowledge set membership proof of these commitments using a Pedersen-Hash-based
Merkle tree approach. This is the part of the protocol that can be replaced by one of our RSA-
based solutions in order to obtain a speedup in proving time. In particular, we could slightly
modify the note commitments in order to enable the use of our schemeMemCPRSAPrm for sets of
prime numbers, which gives the best ef�ciency. We can proceed as follows. Let us recall that the
note commitments are represented by their x coordinates in the underlying elliptic curve group.
We can then modify them so that the sender chooses a blinding factor such that the commitment
representation of a note is a prime number, and we can add a consensus rule that enforces this
check. With this change, we can achieve a solution that is signi�cantly more ef�cient than that
currently used in Zcash. Currently Zcash uses a Merkle Tree whose depth is 32. In this setting,
we would be able to reduce proving time of set-membership from 1.12s to 54.51ms, trading it
for larger proof sizes. We note that in this application, the set-membership proof about u 2 S is
accompanied by another predicate P (u). In the proof statement of the Zcash protocol, proving
that P (u) is satis�ed takes considerably less time than the membership proof, hence this is why
our solution would improve the overall proving time considerably, albeit the proof having more
components. Another interesting comment is that our solution signi�cantly reduces the size of
the circuit, hence the need of a succinct proof system is reduced and one may even consider
instantiations with other proof systems, such as Bulletproofs, that would offer transparency at
the price of larger proofs and veri�cation time.

Asset Governance. In the context of blockchain-based asset transfers protocols, a governance
system must be established to determine who can create new assets. In many cases these assets
must be publicly traceable (i.e., their total supply must be public), yet in others, where the assets
can be issued privately, validators still need to verify that the assets were issued by an authorized
issuer. Speci�cally, there may be a public set of rules, X (where a rule = (pk, [a, b])), de�ning
which entities (public keys) are allowed to issue which assets (de�ned by a range of asset types),
forming an “issuance whitelist”. When one of those issuers wants to issue a new asset, they
need to prove (in zero knowledge) that their public key belongs to the issuance whitelist, which
entails set membership, as well as prove that the asset type they issued is within the allowed
range of asset types (as de�ned in the original rule). In this case, the accumulated set of rules is
public to all, and this public information may also include a mapping between rules and prime
numbers. Our RSA-based scheme for sets of primes (Section 4.4.3) can suit this scenario.

Anonymous Broadcast. In a peer-to-peer setting, anonymous broadcast allows users in a group
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to broadcast a message without revealing their identity. They can only broadcast once on each
topic. One approach described in [1] works by asking users to put down a deposit which they
will lose if they try and broadcast multiple messages on the same topic. In this approach users
joining a group deposit their collateral in a smart contract. Whoever has the private key used
by the client for the deposit can claim the sum. The approach in [1] makes sure that the key
is leaked if one broadcasts more than one message. To enforce this leakage we require that
at broadcast time users (i) derive an encryption key K that depends on their private key and
the topic, and (ii) compute an encryption of the private key by the newly derived K. Then
the users publish both the ciphertext and a secret share of the encryption key K, and prove
(in zero-knowledge) their public key is part of the group and that (i) and (ii) were performed
correctly. Which speci�c share needs to be revealed depends on the broadcasted message, thus
making it likely two different shares will be leaked for two different messages.
This way, broadcasting multiple messages on the same topic reveals the user’s private key,

allowing other users to remove them from the group by calling a function in the smart contract
and receive part of the deposit.
A particularly interesting use case for anonymous broadcast is that in which the group is

comprised of validators participating in a consensus algorithm, who would like to broadcast
messages without exposing their node’s identity and thus prevent targeted DoS attacks. This
setting requires proofs to be computed extremely fast while veri�cation performance require-
ments are less strict. OurMemCPRSAPrm can satisfy these performance requirements trading
for a modest increase in proof size.
Financial Identities. In the �nancial world, regulations establish that �nancial organizations
must know who their costumers are [102]. This is called a KYC check and allows to reduce the
risk of fraud. Some common practices for KYC often undermines user privacy as they involve
collecting a lot of personal information on them. Zero-knowledge proofs allow for an alternative
approach. In modern systems, one can expect that individuals or companies will be able to
prove that they belong to a set of accepted or legitimate identities. A privacy-preserving KYC
check would then be reduced to generating a set-membership proof in zero-knowledge. Often
some further information is required, e.g. the credit score of the individual. In such cases our
CP-SNARK for set membership can be combined with one proving an additional predicate
P (id) on the identity in a modular fashion.
Regarding applications of non-membership proofs, we expand on the well-known concept

of “blacklists”, where identities (or credentials) must be shown to not belong to a certain set
of identities (or credentials). As an example, in the context of �nancial identities, anti-money
laundering regulations (AML) [189] require customers not to be in a list of fraudulent identities.
Here one can use our non-membership construction to generate a proof that the customer does not
belong to the set of money launderers (or those thought to be). Because, as in the set-membership
case, a user may have to prove additional information about their identity, here we can also
bene�t from a modular framework. Furthermore, modularity allows us to cheaply prove both
membership and non-membership (at the same time) for the same identity id together with
some additional information P (id) : holding commitment c(id) one can produce the following
tuple of proofs: (1) a membership proof (id 2 S); (2) a non-membership proof (id 62 S0); (3) a
CP-SNARK proof that includes the statement to be proven on that identity (P (id)).
We note that in some cases, a central authority, who controls the white and black lists, is

trusted to ensure the integrity of the lists. This means that the identities can be added or removed
from the lists, which means that our RSA-based construction is ideal given the comparatively
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reduced cost of updating the dynamic accumulator.

Zerocoin Vulnerability. Another speci�c application of our RSA-based constructions is that of
solving the security vulnerability of the implementation of the Zerocoin protocol [164] used in
the Zcoin cryptocurrency [218]. The vulnerability in a nutshell: when proving equality of values
committed under the RSA commitment and the prime-order group commitment, the equality
may not hold over the integers, and hence one could easily produce collisions in the prime order
group. Our work can provide different ways to solve this problem by generating a proof of
equality over the integers.

4.8 Instantiation over Hidden Order Groups

In sections 4.4, 4.5 we construct zero knowledge protocols for set membership/non-membership,
where the sets are committed using an RSA accumulator. The integer commitment scheme
IntCom, the RSA accumulator-based commitments to sets SetComRSA, SetComRSA0 , the proof
of equality modEq, the argument of knowledge of a root Root and the argument of knowledge
of coprime element Coprime are all working over RSA groups.
Although in our work above we specify the group to be an RSA group, we note that our

protocols can also work over any Hidden Order Group. For example Class Groups [49] or the
recently proposed groups from Hyperelliptic Curves [94, 146].
Here we describe the (slight) modi�cations, in the protocols and the assumptions under

which they would be secure, that are necessary to switch to (general) Hidden Order Groups.
Let Ggen(1�) be a probabilistic algorithm that generates such a group G with order in a

speci�c range [minord(G),maxord(G)] such that 1
minord(G) ,

1
maxord(G) ,

1
maxord(G)�minord(G) 2

negl(�).
The additional assumption that we need to make is that it is hard to �nd any group element

inG of low (poly-size) order. This is the Low Order Assumption [39]]. We refer to Section 3.3.1
for the de�nition of the assumption.
We note that speci�cally for RSA groups, for Low Order assumption to hold, we have to

work in the quotient group Z⇤
N/{1,�1} [215], since otherwise �1 would trivially break the

assumption. So Z⇤
N/{1,�1} would be an instantiation of a Hidden Order Group where the Low

Order assumption holds.
In terms of constructions, one difference regards the upper bound on the order of G that

is used in the protocols. More precisely, throughout the main core of our work we use N as
an upper bound for the order of the group Z⇤

N and N/2 as an upper bound for the order of
the quadratic residues subgroup QRN . Similarly, in a Hidden Order Group G generated by
Ggen, although the order of the group is unknown, a range in which the order lies is known
[minord(G),maxord(G)]. So the maximum order maxord(G) can be used, instead of N , as an
upper bound. In many cases these values are used either to securely sample a random value or
to bound the size of a value needed for a security proof. For example a random value that is
sampled from

�
�bN/4c 2�z+�s , bN/4c 2�z+�s

�
in the RSA group instantiation will be sampled

from
⇣
�maxord(G)

2 2�z+�s , maxord(G)
2 2�z+�s

⌘
in the case of hidden order groups.

Here we give other speci�c changes that need to be made to instantiate our protocols in
general hidden order groups. For IntCom, the veri�cation equation becomes C = GxHr

(without the ±). Then the argument of knowledge of opening of such a commitment would be
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secure under the strong RSA and low order assumptions. The set commitments SetComRSA,
SetComRSA0 remain the same and are binding under the strong RSA assumption for Ggen (and
collision resistance of Hprime for the case of SetComRSA). For modEq, the same difference
as for the AoK of an opening of an IntCom commitment is inherited. For Root and Coprime,
the proposition 1 needs to be slightly modi�ed: A = B

x
y can be without ±, and can be proven

under the low order assumption instead. Finally, in the proof of security of protocol Coprime,
in lemma 7 the assumption �s < log(N)/2 is not needed as long as the low order assumption
holds (an adversary that can �nd H,�c such that gcd(ord(H), q`) = 1 can be used to break
low order assumption).
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5
ZERO-KNOWLEDGE PROOFS FOR BATCH SET MEM-
BERSHIP

The results of this chapter appear in a paper under the title "Succinct Zero-Knowledge Batch
Proofs for RSA Accumulators" published at the ACM CCS 2022 conference [60].

5.1 Technical Contributions

We advance the research line of zero-knowledge proofs for set membership by proposing new
techniques to ef�ciently use zkSNARKs with RSA accumulators. We propose new, more scalable
protocols for succinct zero-knowledge proofs of batch membership.

Succinct proofs of batch membership. The main technical result of this chapter is a commit-
and-prove [64] zkSNARK for batch membership, that is: Given an RSA accumulator acc to a set
S = {x1, . . . , xn} and a succinct Pedersen commitment cu to a vector of values (u1, . . . , um), it
holds ui 2 S for every i = 1, . . . ,m. Thanks to the commit-and-prove feature, our scheme can
be ef�ciently and modularly composed with other commit-and-prove22 zkSNARKs [61] in order
to prove further properties of the committed elements, e.g., 8i : ui 2 S^P (u1, . . . , um) = true
(P could be for example a numerical range check). We dub our construction harisa23.
Our technical contributions include: a new randomization method for RSA accumulator

witnesses (needed to obtain zero-knowledge) and a newway to prove the accumulator veri�cation
in zero-knowledge in a SNARK without encoding RSA group operations in the constraint system.
The latter is based on a novel combination of (non-succinct) sigma protocols, succinct proof of
knowledge of exponent [40], and zkSNARKs for integer arithmetic.

5.2 Technical Overview

We now present a high-level overview of our techniques.
22Roughly, the veri�cation algorithm of the zkSNARK takes as input short commitments to a long (potentially

private) input. This property is useful as the elements for which we prove set membership need to stay private, but
still “referred to”, e.g. for proving additional properties on them.

23harisa stands for “elements-Hiding Argument for RSA accumulators”.
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Our core protocol is a succinct zero-knowledge proof of set membership for a batch of
elements. Given a (public) set S = {x1, . . . , xn} and a commitment to u1, . . . , um, we aim at
proving that u1, . . . , um 2 S. We require for privacy that the ui’s remain hidden (and thus we
provide them only as a commitment in the public input). We also require for ef�ciency that
proof size and veri�cation time should not depend either on the batch sizem or the set size n.
We start from applying RSA accumulators [18] to compress the set into a succinct digest.

Given random group element g in a group of unknown order (e.g. an RSA or class group [49]),
one can produce a compressed representation of the set24 as acc = gx1·x2···xn . RSA accumulators
enjoy succinct batch-membership proofs: to prove that u1, . . . , um 2 S it suf�ces to provide
a single group element (a witness)W = g

Q
i2[n] xi/

Q
i2[m] uj , which the veri�er can check as

W u1···um = acc.
Though succinct, the batch-membership proofs of RSA accumulators do not hide the ui

elements, as the veri�er should know them in order to perform the exponentiation. To address
this problem, we could use a non-interactive zero-knowledge proof of exponentiation, which
can be obtained using a ⌃-protocol [83] (a three-message zero-knowledge scheme) made non-
interactive through the Fiat-Shamir transform [101]. In it the prover computes: R W r for a
suf�ciently large random r; a random oracle challenge h H(acc||g||W ||R), an integer k  
r + h ·

Q
i2[m] ui. The veri�er accepts this zk-proof (R, h, k) if h = H(acc||g||W ||R) and R ·

acch = W k.
This protocol however does not yet achieve our goal, which is to generate a zero-knowledge

batch-membership proof for committed ui’s. Towards this goal, we need to solve the following
technical challenges. (A) The veri�er needs to know the witness W , which can itself leak
information about the elements it proves membership of. For example for m = 1 one can
ef�ciently �nd the element u1 by brute-force testing all elements of the set S,W xi

?
= acc (recall

that the set is public). The xi⇤ for which the test passes will be u1. (B) The proof (R, h, k) above
simply shows existence of an exponent u such thatW u = acc, in particular it does not link this
statement to committed (u1, . . . , um) such that u = u1 · · ·um. (C) The proof is not succinct
since the integer k is O(m)-bits long. (D) Most notably, the ⌃-protocol described above is not
even sound, unless the challenge is binary, h 2 {0, 1} [17, 200].
Our key contribution is an ef�cient technique to ef�ciently prove the veri�cation of this

⌃-protocol using a SNARK. Notably, we do not need encode any RSA group operations in the
SNARK constraint system25. To obtain this result we combine three main ideas:

1. We introduce a novel randomization method for an RSA accumulator witness,W 7! Ŵ , so
that Ŵ provably doesn’t leak any information about the ui’s.

Our hiding-witness transformation works as follows: let p1, . . . , p2� be the �rst 2� prime
numbers. We always (arti�cially) add these primes to the accumulator, i.e., the accumulator
of a set S is an RSA accumulator ˆacc of Ŝ  S [ {p1, . . . , p2�}: ˆacc  accp1...p2� (we
assume that S does not contain any of the pi’s). Then, to produce the hiding witness Ŵ we
raise to the exponent each prime pi with probability 1/2. A bit more formally, we sample
bi $ {0, 1} and set Ŵ  W

Q
i2[2�] p

1�bi
i , bi’s should remain hidden. We formally prove that

under a cryptographic assumption (DDH-II, a variant of DDH [63]) Ŵ is computationally
24The elements of the set should be primes (or hashed to ones) for the RSA accumulator to securely apply.
25A “constraint system” is an encoding of the property proved by the SNARK. Its size, the number of constraints,

is a key ef�ciency metric when evaluating proof schemes.
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indistinguishable from random and thus Ŵ , alone, hides ui’s (see section 5.4.1). Notice
that Ŵ can be veri�ed through the equality Ŵ

Q
i2[m] ui·

Q
i2[2�] p

bi
i = ˆacc. Therefore we

can use the NIZK for exponentiation described above, but for base Ŵ and exponent e :=Q
i2[m] ui ·

Q
i2[2�] p

bi
i .

This technique solves the challenge (A) as it turns an RSA accumulator veri�cation into a ZK
veri�cation. Yet challenges (B) and (C) remain: k is not short and the protocol only proves
the existence of e such that Ŵ e = ˆacc—which says nothing about membership of legitimate
elements from S. For example e can contain only elements of {p1, . . . , p2�} and no element
from S.

2. To solve (B) we “link” the ⌃-protocol to cu, a commitment to all ui’s, by using a zkSNARK
that proves the correct computation of k from the committed legitimate ui’s. Namely it
proves that, for cu, a commitment to u, and cr,s, a commitment to integers s =

Q
i2[2�] p

bi
i

and r, the equality k = r + h · s ·
Q

i2[m] ui holds over the integers and ui > p2� for each
i 2 [m]. Recall that p2� is the largest of all pi’s, so ui > p2� translates to ui 6= pj for all
j 2 [2�]. This means that the exponent of e contains elements ui’s committed a-priori and
that they are legitimate (not one of the arti�cially added pi’s).

3. Although the above careful interplay between RSA Accumulators, ⌃-protocols, zkSNARKs
and our hiding technique for RSA accumulators witnesses gives a secure zero-knowledge
proof of set membership, it is not yet succinct, as the veri�er needs to receive the O(m)-long
integer k. To solve this technical challenge, we apply a succinct proof of knowledge of
exponent PoKE [40]. Instead of sending k, the prover sends B = Ŵ k accompanied with a
succinct proof that there is an integer k such that B = Ŵ k. Adding the PoKE proof however
breaks the link between the⌃-protocol and the zkSNARK as the latter is supposed to generate
a proof for a public k. To solve this last challenge, we “open the box” of PoKE veri�cation
and observe that the veri�er receives the short integer k̂ = k mod `, where ` is a random
prime challenge of 2� bits. Therefore, the last idea of our protocol is to let the zkSNARK
prove the same statement as above but for k̂, namely that k̂ = r + h · s ·

Q
i2[m] ui mod `.

A special mention needs to be made to (D), the soundness of the ⌃-protocol. Standard
impossibility results [17, 200] show that the ⌃-protocols over groups of unknown order (as the
groups of RSA accumulators) can have at most 1/2 soundness-error, meaning that they need
many repetitions (e.g. � = 128) to leverage them to fully sound (with negligible soundness-error).
This usually makes the protocols prohibitively expensive.
The general intuition of the impossibility is that (using usual rewinding techniques) the

extractor gets (R, h, k) and (R, h0, k0) such that acch�h0
= W k�k0 . However, we cannot imply

to acc = W (k�k0)/(h�h0) because (h� h0)�1-in the exponent cannot be ef�ciently computed
in groups of unknown order. So we are bound to set h 2 {0, 1} (so that h � h0 = 1). In
our solution, the zkSNARK proof described in (2) makes the extraction of the Sigma-protocol
possible. This is possible because this proof guarantees that, in the two executions, k = r+ suh
and k0 = r + suh0, for committed r, s, u. This way, we get that acch�h0

= W su(h�h0), from
which we can conclude the desired result acc = W su.

Our technique of using a zkSNARK for the correct computation of the last message of a
⌃-protocol over groups of unknown order, is generic for any such protocol and gives a way to
ef�ciently bypass the impossibility results [17, 200] without inexpensive repetitions. We expect
this to be of independent interest.
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5.3 De�nitions and Building Blocks

We give informal de�nitions for the main cryptographic primitives used in our constructions.

5.3.1 Relations for batch set-membership

Remark 13 (Syntactic Sugar for SNARKs/CP-SNARKs). For convenience we will use the
following notational shortcuts. We make explicit what the private input of the prover is by
adding semicolon in a relation and in a prover’s algorithm (e.g., R( ; )). We explicitly
mark relations as “commit-and-prove” by a tilde. We leave the assumed commitment scheme
implicit when it’s obvious from the context. Occasionally, we will also explicitly mark the
commitment inputs by squared box around them (e.g. cu ) and we will assume implicitly that
the relation includes checking the opening of these commitments (and we will not make explicit
the openings). We assume that in the commitment cu the subscript u de�nes the variable u the
commitment opens to. Analogously the opening for cu is automatically de�ned as ou. Example:
R̃ck( cu , h; r) = 1 , h = SHA256(u||r) is a shortcut for R̃ck(cu, h; r, u, ou) = 1 , h =
SHA256(u||r) ^ cu = Commit(ck, u; ou).

Our focus in this work is on building ef�cient CP-SNARKs for the following relation
parametrized by an accumulator scheme Acc and parameters ppAcc:

R̃memck ( cU , acc;W )=1, Acc.VfyMem(pp, acc, U,W )=1

In a nutshell, a CP-SNARK for R̃memck can prove that cU is a commitment to a vector of values
such that each of them is in the set accumulated in acc.

The speci�c notion of knowledge soundness we assume for CP-SNARKs for these relations
is the one where the malicious prover is allowed to select an arbitrary set S to be accumulated
but the accumulator acc is computed honestly from S. Given an accumulator scheme Acc, we
informally talk about this speci�c notion as “security under the Trusted Accumulator-Model
for Acc”. We do not provide formal details since this model corresponds to the notion of
partial-extractable soundness (see Section 4.2.3). This trusted accumulator model �ts several
applications where the accumulator is maintained by the network.

In the next section we recall an interesting byproducts of having modular commit-and-prove
SNARKs for the relations R̃memck .

5.3.2 Composing (commit-and-prove) set-membership relations

The advantage of having CP-SNARKs for the set-membership relation (rather than just SNARKs)
is that one can use the composition of section 3.7.3.3 to obtain ef�cient zkSNARKs for proving
properties of elements in an accumulated set, e.g., to show that 9U = {u1, . . . , un} such that a
property P holds for U (say, every ui is properly signed) and U ⇢ S, where S is accumulated
in some acc. In particular, such a zkSNARK can be obtained via the simple and ef�cient
composition of a CP-SNARK for R̃memck (like the ones we construct in our work) and any other
CP-SNARK for P .
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5.4 harisa: Zero-KnowledgeCP-SNARK forBatch Set-Membership

In this section we show the construction of a CP-SNARK for the relation R̃memck de�ned in
Section 5.3.2, where: the accumulator is the classical RSA accumulator (see Section 3.5.2,
Figure 3.2) where the accumulated elements are prime numbers larger than the 2�-th prime
(1619 for � = 128), and the commitment scheme for the commit-and-prove functionality is
the Pedersen scheme (see Figure 3.1). In section 5.6.1 we discuss how this construction can be
easily extended to accumulate arbitrary elements via an ef�cient hash-to-prime function.

5.4.1 RSA Accumulators with hiding witnesses

We describe a method to turn a witnessW of an RSA accumulator into another witness that
computationally hides all the elements ui it proves membership of. As discussed in Section 5.2
this constitutes the �rst building block towards achieving a zero-knowledge membership proof
for committed elements.
Let Pn = {2, 3, 5, 7, . . . , pn} be the set of the �rst n prime numbers. Our method relies on

two main ideas.
First, prover and veri�er modify the accumulator acc so as to contain the �rst 2� primes

by computing ˆacc acc

⇣Q
pi2P2� pi

⌘

. Note, ˆacc = g

⇣Q
xi2S xi

⌘
·
⇣Q

pi2P2� pi
⌘

? = Accum(pp, S [
P2�).

Second, we build a randomized witness forX ⇢ S as the witness for (X [ P ) ⇢ (S [ P2�)
where P is a randomly chosen subset of P2�. In more detail, givenW , the prover computes Ŵ
as follows:

• choose at random 2� bits b1, . . . , b2� $ {0, 1} and let s :=
Q

pi2P2�
pbii and s̄ :=

Q
pi2P2�

p1�bi
i .

• Ŵ  W s̄ = g

⇣Q
xi2S\X xi

⌘
·
⇣Q

pi2P2� p
1�bi
i

⌘

? .

Essentially, we have s as the product of the randomly chosen primes, s̄ as the product of the primes
not chosen, and we denote with p⇤ :=

Q
pi2P2�

pi the product of all the �rst 2� primes. Finally,
byD2� we denote the distribution of s̄, according to the sampling method described above. Note
that ss̄ = p⇤. Also, the new witness Ŵ could be veri�ed by checking Ŵ s

Q
xi2X xi = ˆacc.

Our �rst technical contribution is proving that this randomization is suf�cient. More precisely,
we use a computational assumption over groups of unknown order, called DDH-II, and we show
that under DDH-II Ŵ is computationally indistinguishable from a random R $G?. We stress
that this hiding property holds only for the value Ŵ alone, i.e., when the random subset of P2�

is not revealed. As we show later, this is suf�cient for our purpose as we can hide the integer s
in the same way as we hide the elements we prove membership of.

In the following section we state and explain the DDH-II assumption. In brief, this is a variant
of the classical DDH assumption where the random exponents follow speci�c, not uniform,
distributions. Next, we prove that under DDH-II Ŵ is computationally indistinguishable from
random.

5.4.1.1 The DDH-II assumption

First, we state the DDH-II assumption, which is parametrized by a generator GGen?(1�) of a
group (of unknown order in our case) and by a well-spread distributionWS2� (in our case D2�).
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A distributionWS2� with domain X2� is called well-spread if Pr[X = x|X $WS2�]  2�2�

for each x 2 X2� (Intuition: the elements sampled from this distribution are “suf�ciently
random”).

Assumption 1 (DDH-II). Let G?  GGen?(1�) and g? $G?. LetWS2� be a well-spread
distribution with domain X2� ✓ [1,minord(G?)]. Then for any PPT A:

��Pr[A(gx? , g
y
? , g

xy
? ) = 0]� Pr[A(gx? , g

y
? , g

t
?) = 0]

�� = negl

where x $WS2� and y, t $ [1,maxord(G?)2�].26

Our distribution of interest D2� can be shown well-spread: there are 22� outcomes and are
all distinct, s̄ =

Q
pi2P2�

p1�bi
i are distinct since they are different products of the same primes

(no pi can be used twice). It follows that Pr[s̄ $D�] = 1/22� for every s̄.

Remark 14. The constraint that the domain should be in [1,minord(G?)] is for the following
reason: If a sampled x is larger than ord(g?) then in the exponent of gx? a reduction modulo
ord(g?) will implicitly happen leading to a gx? = gx

0
? for some x

0 6= x. This can turn gx? more
frequently sampled, which can potentially help the adversary distinguish between (gx? )

y and gt?.

Different variants of DDH-II have been proven secure in the generic group model [196, 160]
for prime order groups [86, 19]. We can prove it secure for groups of unknown order similarly
with minor technical modi�cations related to GGM proofs in such groups [87]. In Section 5.7
we present a proofs of security in the GGM.

Remark 15. The need of an at least 22�-large domain X2� (and at most 2�2� probability) for
� security parameter comes from well-known subexponential attacks on DLOG [179, 181].

5.4.1.2 Security Proof of our hiding witnesses

Theorem 16. For any parameters pp Setup(1�), set S (where S \ P2� = ;), R $G? and
Ŵ computed as described above it holds:

���Pr[A(pp, S, Ŵ ) = 0]� Pr[A(pp, S,R) = 0]
��� = negl

for any PPT A, under the DDH-II assumption for G? and D2�.

Proof. Call A an adversary achieving a non-negligible advantage ✏ above, i.e.
✏ :=

���Pr[A(pp, S, Ŵ ) = 0]� Pr[A(pp, S,R) = 0]
���We construct an adversary B against DDH-

II that, using adversary A, gains the same advantage. B receives (G?, g?, gs̄?, g
r
? , g

bs̄r+(1�b)t
? ),

where s̄ $D2� and r, t $ [1,maxord(G?)2�]. Then it chooses arbitrarily an element u and
sets S = {u}, pp (G?, gr?) and V = gbs̄r+(1�b)t

? . B sends (pp, S, V ) to the adversaryA, who
outputs a bit b⇤. Finally, B outputs b⇤.
First, notice that gr? is statistically close to a random group element of G?, meaning that A

cannot distinguish pp from parameters generated by Acc.Setup(1�). Furthermore if b = 0 then
V is again a (statistically indistinguishable element from a) uniformly random group element
of G? therefore Pr[B = 0|b = 0] = Pr[A(pp, S,R) = 0]. On the other hand, if b = 1 then
V = gr·s̄? = Ŵu is a witness of u so Pr[B = 0|b = 1] = Pr[A(pp, S, Ŵ ) = 0]. Therefore we
conclude that the probability of B to win the DDH-II is ✏.

26Since the order of the group is unknown, we cannot ef�ciently produce uniformly random elements with
y, t $ [1, ord(g?)]. However, y, t $ [1,maxord(G)2�] still produces statistically close to uniform elements.
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5.4.2 Building Blocks

5.4.2.1 Succinct proofs of knowledge of exponent ( PoKE )

We recall the succinct proofs of knowledge of a DLOG for hidden order groups, introduced by
Boneh et al. [40]. More formally, PoKE is a protocol for the relation

RPoKE(A,B;x) = 1 , Ax = B

parametrized by a group of unknown order G? and a random group element g? 2 G?. The
statement consists of group elements A,B 2 G? while the witness is an arbitrarily large x 2 Z.
Figure 7.6 gives a description of the protocol. For simplicity we directly expose its non-

interactive version (after Fiat-Shamir). Although the interactive version of the protocol is secure
with �-sized challenges its non-interactive version is only secure with 2�-sized challenges, due
to a subexponential attack [39].

Setup(1�) :

(G?, g?) GGen?(1
�)

return crs := (G?, g?)

Prove (crs, A,B;x) :

` Hprime(crs, A,B)

Q Ab
x
` c, res  x mod `

return ⇡ = (Q, res)

VerProof (crs, A,B,⇡) :

Parse ⇡ as (Q, res)

` Hprime(crs, A,B)

Reject if A,B,Q /2 G? or res /2 [0, `� 1]

Reject if Q`Ares 6= B

Figure 5.1: The succinct argument of knowledge PoKE [40]. Hprime denotes a cryptographic
hash function that outputs a prime of size 2�, modeled as a random oracle.

Remark 16. We note that the proof of �g. 7.6 is not originally secure for arbitrary bases A, but
rather for random ones. For arbitrary bases extra care should be taken, that give a proof of
additional 2 group elements. We wil show that the protocol still suf�ces for our needs, since we
combine it with a SNARK for the relation res = x mod `. In a nutshell, a PoKE for random
bases with a SNARK for res = x mod ` give a succinct proof of knowledge of exponent for
arbitrary bases.

This protocol is succinct: proof size and veri�er’s work are independent of the size of x,
O(�) and O(k`k) = O(�) respectively.

5.4.2.2 CP-SNARK for integer arithmetic relations

We assume an ef�cient CP-SNARK cp⇧modarithm for the following relation:

R̃modarithmck ( cu , cs,r , h, `, k̂) = 1 , k̂ = s · h ·
Y

i2[m]

ui + r mod `
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Above, u = (u1, . . . , um) 2 Zm is a vector of integers with a corresponding multi-integer
commitment cu; r, s 2 Z are integers committed with a corresponding multi-integer commitment
cs,r and `, h 2 Z, k̂ 2 [0, `� 1] are (small) integers known as public inputs by both prover and
veri�er.

The above relation is equivalent to the integer relation:

R̃arithmck ( cu , cs,r , h, `, k̂; q) = 1 , q`+ k̂ = s · h
Y

i

ui + r

In fact this is how a modulo operation is encoded in a SNARK circuit. q here is a witness given
to the SNARK.27

5.4.2.3 CP-SNARK for inequalities

We need a CP-SNARK cp⇧bound for the relation (where B is a public integer):

R̃boundck ( cu , B) = 1 ,
^

i2[n]

ui > B

5.4.3 Our Construction for Batched Set Membership (harisa)

Here we describe our CP-SNARK for the relation R̃memck for RSA accumulators and Pedersen
commitments to vectors of integers. Let us recall the setting in more detail.
Prover and veri�er hold an accumulator acc to a set S and a commitment cu. The set’s

domain are prime numbers greater than p2�, the 2�-th prime. The protocol works in the “trusted
accumulator model” (section 5.3.1), which means the set is assumed to be public but the veri�er
does not take it as an input, it only uses acc, for ef�ciency reasons.28
The prover knows a batch of set elements u = (u1, . . . , um) that are an opening of the

commitment cu, and its goal is to convince the veri�er that all the ui’s are in S. To this end,
we assume that the prover has an accumulator witnessWu as an input, either precomputed or
given by a witness-providing entity. In this sense, the prover’s goal translates into convincing
the veri�er that it hasWu such thatW

Q
i ui

u = acc (see also section 5.5 where we further re�ne
this setting).

We give a full description of the CP-SNARK in Figure 5.2. We refer to the technical overview
(sec. 5.2) for a high-level explanation. Below we provide additional comments.
To begin with, both prover and veri�er transform the accumulator acc into ˆacc, the one

corresponding to the same set with the additional small prime numbers from P2�.29 Next, the
prover transformsW into a hiding witness as Ŵ = W s̄ via our masking method of section 5.4.1,
and then computes a (Fiat-Shamir-transformed) zero-knowledge⌃-protocol for the accumulator’s
veri�cation Ŵ su⇤

= ˆacc. However, since the last message k of the protocol is not succinct, it
computes a PoKE for the relation ( ˆacchR) = (Ŵu)k (exponent k), which is the veri�cation
equation of the ⌃-protocol. The PoKE veri�cation requires a check Q`Ŵ k̂

u where k̂ is supposed
27For the sake of our general protocol, it is not necessary that q remains hidden. It is only important that the proof

is succinct w.r.t. its size. However, u, s and r should remain hidden.
28This is a common consideration in scalable systems. The accumulator to the set is either computed once by the

veri�er or validated by an incentivized majority of parties that is supposed to maintain it.
29This operation can also be precomputed, we make it explicit only to show that they can both work with a classical

RSA accumulator as an input.
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to be k mod `. The last step of the proof is to show that k̂ is not just “some exponent” but it is
exactly r + hsu⇤ mod ` with u⇤ being the product of all the ui’s committed in cu. To do so,
the prover generates a proof with the cp⇧arithm CP-SNARK over the commitments cu, cs,r (r is
the masking randomness of the ⌃-protocol sampled in the �rst move). Also, for soundness we
require that s and r are committed before receiving the random oracle challenge h. Finally, the
prover generates a proof with cp⇧bound over the commitment cu to ensure that the elements are
in the right domain.30

We present our construction in �g. 5.2. This construction is obtained by applying Fiat-Shamir
in the random oracle model (ROM) and additional optimizations to its interactive counterpart
which we describe in the appendix (�g. 5.3).

5.4.4 Security Proof

In �g. 5.3 we describe an interactive version of our construction and prove its security below.

Theorem 17. Let H,Hprime be modeled as random oracles and cp⇧modarithm, cp⇧bound be
secure CP-SNARKs. The construction in �g. 5.2 for the relation R̃memck is a secure CP-SNARK:
succinct, knowledge-sound under the adaptive root assumption, and zero-knowledge under the
DDH-II assumption.

Proof. For succinctness, one can inspect that the proof size is proportional to that of cp⇧arithm

and cp⇧bound plus some small constant overhead. Similarly for the veri�er’s cost. So succinctness
is inherited from succinctness of cp⇧arithm and cp⇧bound.

The proof for its interactive version (�g. 5.3) is in the appendix, theorem 18. Then knowledge-
soundness and zero-knowledge come directly from the (tight) security of the Fiat-Shamir trans-
formation for constant-round protocols [12], in the random oracle model.

Theorem 18. Let cp⇧modarithm, cp⇧bound be secure CP-SNARKs then the construction in �g. 5.3
for the relation R̃memck is a secure CP-NIZK: succinct, knowledge-sound under the adaptive root
assumption and zero-knowledge under the DDH-II assumption.

Proof. Succinctness: Comes from inspection and from the assumption that cp⇧modarithm and
cp⇧bound are succinct.

(2,M)-Special Soundness: assume that we have a tree of (2,M) successful transcripts, for
M = poly >

l
kp⇤k+ku⇤k+�

2�

m
, i.e.

n⇣
Ŵu, cs,r, R

⌘
, h, `(j),

⇣
Q(i), res(j)

⌘
,⇡(j)2 ,⇡(j)3

oM

j=1

and n⇣
Ŵu, cs,r, R

⌘
, h̃, ˜̀0(j),

⇣
Q̃(i), ˜res(j)

⌘
, ⇡̃(j)2 , ⇡̃(j)3

oM

j=1

We construct an extractor Ext that works as follows.
Ext uses the extractor of cp⇧modarithm to extract u(j), s(j), r(j), openings of cu and cs,r

respectively, such that res(j) = s(j)h
Q

i u
(j)
i + r(j) mod `(j). From the binding of the com-

mitments we get that u(j) = u(j0), s(j) = s(j
0), r(j) = r(j

0) for each transcript j 6= j0 and
30For the sake of generality we present ⇡2,⇡3 as distinct proofs. In practice they can be proved by the same

CP-SNARK and save on proof-size.
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Setup
�
1�, ck, pp

�
:

crs2  cp⇧modarithm.Setup(1�, ck, R̃modarithmck )

crs3  cp⇧bound.Setup(1�, ck, R̃boundck )

return crs := (ck, pp, crs2, crs3)

Prove (crs, acc, cu;Wu,u, ou) :

ˆacc acc
Q

pi2P2� pi

Let u⇤ =
Y

i

ui, p
⇤ =

Y

pi2P2�

pi

Sample b1, . . . , b2� $ {0, 1}
Let s :=

Y

pi2P2�

pbii , s̄ :=
Y

pi2P2�

p1�bi
i

Ŵu  W s̄
u

Sample r $ {0, 1}kp
⇤k+ku⇤k+2�

cs,r  Commitck(s, r; os,r)

R Ŵ r
u

h H(crs||acc||cu||cs,r||Ŵu||R)

k  r + (u⇤s)h

⇡1  ⇧PoKE.Prv
�
(G?, g?), Ŵu, ˆacchR; k

�

Parse ⇡1 as (Q, k̂)

` Hprime((G?, g?), Ŵu, ˆacchR)

⇡2  cp⇧modarithm.Prv(crs2, cu, cs,r, h, `, k̂;u, ou, r, s, os,r)

⇡3  cp⇧bound.Prv(crs3, cu, p2�;u, ou)

return ⇡ =
�
Ŵu, R, cs,r,⇡1,⇡2,⇡3

�

VerProof (crs, acc, cu,⇡) :

ˆacc acc
Q

pi2P2� pi

Parse ⇡ as (Ŵu, R, cs,r,⇡1,⇡2,⇡3) and ⇡1 as (Q, k̂)

` Hprime((G?, g?), Ŵu, ˆacchR)

h H(crs||acc||cu||cs,r||Ŵu||R)

Reject if ⇧PoKE.Vfy(G?, g?), Ŵu, ˆacchR,⇡1) 6= 1

Reject if cp⇧modarithm.Vfy(crs2, cu, cs,r, h, `, k̂,⇡2) 6= 1

Reject if cp⇧bound.Vfy(crs3, cu, p2�,⇡3) 6= 1

Figure 5.2: harisa: our scheme for proving set membership of a committed element. We let H
denote a cryptographic hash function modeled as a random oracle.

j, j0 2 [M ], since they refer to the same commitments. So we denote the extracted values as
u, s, r and get:

sh
Y

i

ui + r = res(j) mod `(j), for each j 2 [M ]
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Setup
�
1�, ck, ppAcc

�
:

crs2  cp⇧arithm.Setup(1�, ck, R̃arithmck )

crs3  cp⇧bound.Setup(1�, ck, Rbound)

return crs := (ck, ppAcc, crs2, crs3)

P (crs, ˆacc, cu;Wu,u, ou, S) V (crs, ˆacc, cu)

Sample b1, . . . , b2� $ {0, 1}

let s :=
Y

pi2P2�

pbii , s̄ :=
Y

pi2P2�

p1�bi
i

Ŵu  W s̄
u

Sample r $ {0, 1}kp
⇤k+ku⇤k+�

cs,r  Commitck(s, r; os,r)

R Ŵ r
u

⇡3, Ŵu, cs,r, R

h $ {0, 1}�

h

k  r + (s
Y

i

ui)h

` $P22�

`

Q Ab
k
` c, res  k mod `

⇡2  cp⇧modarithm.Prv(crs2, cu , cs,r , h, `, res)

⇡3  cp⇧bound.Prv(crs3, cu, p2�;u, ou)

(Q, res),⇡2

Accept iff:

1. Q 2 G? and res 2 [0, `� 1]

2. Q`Ŵ res
u = âcchR and

3. cp⇧modarithm.Vfy(crs2, cu, cs,r, h, `, res,⇡2) = 1

4. cp⇧bound.Vfy(crsbound, cu, p2�,⇡3) = 1

Figure 5.3: Interactive version of our protocol for batch membership.
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Using the Chinese Remainder Theorem we get a k such that

k = sh
Y

i

ui + r mod

0

@
MY

j=1

`(j)

1

A

M can be set suf�ciently large (but still polynomial-sized) so that
QM

j=1 `
(j) > sh

Q
i ui+ r and

thus k = sh
Q

i ui + r over the integers. Furthermore, k = res(j) mod `(j) for each j 2 [M ].
As shown in [40] the fact that for any accepting proof, (`, Q, res), it holds that Q`Ŵ res

u =
acchR and k = res mod ` (the latter in our case is ensured by the SNARK) then under the
adaptive root assumption we get:

Ŵ k
u = ˆacchR

(we refer to [40] appendix C.2 for the formal reduction).
Then the extractor does the same for the second set of transcripts to get k̃, ũ, s̃, r̃ such that

Ŵ k̃
ũ = ˆacch̃R and k̃ = s̃h̃

Q
i ũi + r̃ over the integers. Now since ũ, s̃, r̃ refer to the same

commitment as u, s, r (recall that the commitment were sent a priori) from the binding of the
pedersen commitment we get that ũ = u, s̃ = s, r̃ = r, which gives us that k̃ = sh̃

Q
i ui + r.

From the above we have: Ŵ k
u = ˆacchR and Ŵ k̃

ũ = ˆacch̃R. Combining the two we get that

Ŵ k�k̃
u = ˆacch�h̃ ,

Ŵ
sh

Q
i ui+r�sh̃

Q
i ui�r

u = ˆacch�h̃ ,

Ŵ
(s

Q
i ui)(h�h̃)

u = ˆacch�h̃

From the low order assumption (which is implied by the adaptive root assumption) we get
Ŵ

s
Q

i ui
u = ˆacc.
Finally, the extractor runs once the extractor of cp⇧bound to get that ui > 2�.
To conclude the proof, (2,M)-special soundness implies knowledge-soundness [11].
Zero-Knowledge: It comes directly from the standard rewinding-simulation ⌃-method and

the use of the simulators of cp⇧modarithm and cp⇧bound.

5.5 Discussion on the Generation and Maintenance of Accumula-
tor Witnesses

The setting In the previous we presented our zero-knowledge protocol. But zero-knowledge
proof aside, the membership proof computation is already fairly expessive for RSA accumulators.
We consider though that the memberhip proof W is already obtained before computing the
zero-knowledge proof and is just taken as input. There are different scenarios where it is plausible
that users hold precomputed witnesses for their set elements of interest. These scenarios include
for example UTXO-like settings and whitelists (where the elements represent respectively an
unspent transaction and an identity).
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Aggregating witnesses for singletons Consider a party holding a “set of interest” Û (the
subset of accumulated elements in which it has a stake to prove set membership). As mentioned
above we assume that each party holds an accumulator witness for each of the elements in Û .
When requested to batch prove membership for u1, . . . , um 2 Û , the party can obtain a single
witness for the whole batch (like the one assumed as input in �g. 5.2) without recomputing it
from scratch. In RSA accumulators, we can in fact apply a process of aggregation among the
witnesses. Aggregation uses Shamir’s trick [192]31 and proceeds in a tree-like fashion. For a
batch of sizem it consists of roughlym GCD computations, and a similar number of products
and RSA exponentiations with integer inputs of varying size.

Witness generation and maintenance Here we discuss how proving parties can obtain and
maintain witnesses for elements in their set of interest32.

A straightforward way for a user to obtain a witness to their elements of interest is to precom-
pute it from scratch. For a single witness, this involves performing roughly N exponentiations
with exponents of 256 bits in an RSA group (where N is the whole set size). There are ef�cient
ways to reuse work and distribute it in parallel for subsets of elements. The naive approach
to generate a witness requires less than a minute on an ordinary laptop for a set of size 216,
but it can be costly for larger sets. In order to mitigate this, there exist more sophisticated
highly-parallelizable approaches to generate witnesses. For example, those described in Section
4.4 in [168]. As an alternative this can be delegated to a service provider as described for updates
in [40] (notice that the witnesses from this service providers does not need to be trusted and can
be ef�ciently veri�ed through the standard accumulator veri�cation algorithm).

Does a party need to recompute their witness from scratch if the accumulator (and its under-
lying set) changes over time? Fortunately not. A party observing updates to the accumulators
can update their witnesses cheaply. For example, appending an element x to the set requires
updating the witness by simply exponentiating the old witness to x. Other types of updates (e.g.,
removal of an element) can be handled through Shamir’s trick33
If a party cannot observe all updates or if the update process is too demanding, this can be

delegate to a (non trusted) service provider as described in [40].
A note on storage: if storing all witnesses for singletons of interests is too demanding, this

can be mitigated through some of the disaggregation & aggregation techniques described in [59]
and storing only witnesses for “chunks” of elements of interest34. A similar technique can also
be useful to reduce the complexity of handling updates.

31See page 12 in [59].
32Here we provide an overview of techniques that can be useful to make these issues practical. Which approach is

best is something highly sensitive to idiosyncratic aspects of the domain and a full analysis is out of the scope of this
paper.

33 These operations can be concretely inexpensive for meaningful sizes of the subset of interest. For example, we
measure the time required to update 64 witnesses after an element is removed from the set to be around 0.3s on an
ordinary laptop. Performing a similar update in the event of an element being added to the set is even faster.

34The concrete costs for aggregation and disaggregation correspond to the cost of updatingwitnesses for respectively
deletions and additions of elements since they use the same techniques. See also numbers reported in footnote 33.
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5.6 Extending our CP-SNARK for batch membership

5.6.1 Dealing with sets of arbitrary elements

The scheme described in the section 5.4 works for sets whose elements are suitably large prime
numbers. Working with primes can be a limitation in practical applications. Here we describe
how to get rid of this limitation and can support sets of arbitrary elements, such as binary strings.
The idea is common in previous work and is to use a suitable collision-resistant hash function
that maps arbitrary strings to prime numbers. What is a bit more complicated in our setting is
that in order to prove membership of an arbitrary element, we need to prove the mapping to a
prime.

Thanks to the commit-and-prove modularity of our protocol we can do this extension easily.
This is the same idea used in [31]. Say that the prover holds a commitment ĉ to a vector of binary
strings (û1, . . . , ûm). To prove the mapping the prover creates a commitment c to the primes
(u1, . . . , um) such that ui = Hprime(ûi), runs our CP-SNARK with c and adds a proof ⇡Hprime

showing that c, ĉ commit to elements such that 8i : ui = Hprime(ûi). The latter proof can be
generated via a CP-SNARK for this hashing relation. In particular, although a computation of
Hprime involves several computations of a collision resistant hash function until reaching a
prime, for the sake of proving one can use nondeterminism and prove a single hash evaluation
(see [31] for details).

5.6.2 Succinct batch proofs of non-membership

We observe that by using a CP-SNARK for batch membership it is also possible to prove batch
non-membership, if one accumulates sets using an interval-based encoding. The idea is that
the elements of the set S = {xi}i are ordered, x1 < x2 < · · · < xn, and the accumulator
actually contains hashes of consecutive pairs ui = H(xi�1, xi). This way, proving that x /2 S
translates into proving that there is an element uj = H(xj�1, xj) in the accumulator such that
xj�1 < x < xj . The idea of interval-based non-membership proofs was introduced by Buldas
et al. in the context of Merkle trees [51].

5.7 Security proof of DDH-II in the generic group model

Here we formally prove that the DDH-II is secure in the generic group model for hidden-order
groups (see Section 3.3.4).
The proof closely follows the one of DDH-II over prime order groups [86] adopting the

hidden order group-GGM techniques of [87].
Useful notation:

• GroupGen(1�) randomized algorithm that samples a hidden order group G with order |G| 2
[B,C]

• ↵(GroupGen(1�)): maximal probability of the largest prime factor p of the group order.

• �(GroupGen(1�),M): probability that p < M , given an arbitrary integerM .

Assumption 2 (f-DDH-II). LetG GroupGen(1�) be a hidden order group with 1/B = negl,
↵(GroupGen(1�)) = negl and g $G. Let {D�}� be a family of well-spread distributions
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where the domain of D is [1, B]. Then for any PPT A,

AdvA,DDH-II := |Pr[A(gx, gy, gxy) = 0]� Pr[A(gx, gy, gt) = 0]| =
= negl(�),

where x $D� and y, t $ [1, 2�C]

Theorem 19. Assumption 2 holds in the generic group model.

Proof. Let A be a polynomial-time generic adversary making at most q = poly generic oracle
queries. The challenger chooses a random encoding � : G ! {0, 1}`, where ` � log(|G|).
The challenger plays the following game with A: C chooses �0, . . . ,�4 $ {0, 1}` (that virtu-
ally correspond to (g, gx, gy, gxy, gt) resp.). Each group element (and thus its corresponding
encoding) is associated with a polynomial in Z[X,Y, T0, T1] (the polynomials are actually
over Z|G|, however the difference with a game where polynomials are over Z is negligible
since the group is of unknown order (due to the low order assumption)). The challenger for
the rest of the game maintains a list L of encoding-polynomial pairs, which is initiated as
L := {(1,�0), (X,�1), (X,�2), (T0,�3), (T1,�4)}.
Then C simulates the generic oracles as follows:

• Group Action: given �i,�j , C searches the list L, recovers the corresponding polynomials
Fi, Fj and computes Fi+Fj . If Fi+Fj 2 L then C sends toA the corresponding (of Fi+Fj)
value �. Otherwise, samples a random � $ {0, 1}` and responds with this toA. Also appends
(Fi + Fj ,�) to L.
• Inversion: Similarly, given �, C searches the list L, recovers the corresponding polynomial
F and computes �F . If �F 2 L then C sends to A the corresponding (of �F ) value �.
Otherwise, samples a random � $ {0, 1}` and responds with this toA. Also appends (�F,�)
to L.

• Random element: C chooses a random � $ {0, 1}` and responds with this to A

In all above queries C takes special care so that a new random � doesn’t coincide with an old
�i 2 L (which anyway happens with negligible probability.
Finally, A outputs a bit b0. Afterwards the challenger samples x $D�, y, t $ [|G|] and

b $ {0, 1} and sets X := x, Y := y, Tb := xy, T1�b := t.
It is clear that the simulation of C doesn’t provide any information to A, except for the

case where two polynomials of L happen to collide for the randomly chosen instantiation
of the problem (i.e. values x, y, t, b). It remains to show that the probability of such event,
Fi(x, y, xy, t) = Fj(x, y, xy, t) for i, j in the list, is negligible.

First let p be the biggest factor of the order of G and with degree d. Then there is a groupH
such that G ⇠= Zpd ⇥H . The random choice of x, y, t is equivalent to as random independent
choice of x0, y0, t0 $Zpd and x00, y00, t00 $H . Then if Fi(x, y, xy, t) = Fj(x, y, xy, t) over
Z|G| it should also hold that Fi(x0, y0, x0y0, t0) = Fj(x0, y0, x0y0, t0) mod pr. According to [87,
Lemma 3] this probability is at most:

q(q � 1)

2
·
✓
q↵(GroupGen(1�)) + �(GroupGen(1�),M) +

2

M

◆

for any 0 < M < min{2H1(D�), p}. The q(q�1)/2 factor counts for the different combinations
of i, j.
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Now if we set 1/M =
p
↵(GroupGen(1�)) then�(GroupGen(1�),M) M ·↵(GroupGen(1�)) =p

↵(GroupGen(1�)) (see [87, Fact 1]). Which gives the overall success probability of A:

q2(q � 1)

2
↵(GroupGen(1�)) +

q(q � 1)

2

q
↵(GroupGen(1�))

+q(q � 1)
q
↵(GroupGen(1�))

which is negligible, since ↵(GroupGen(1�)) = negl by assumption and q = poly.

Fine-grained security If we set M = 2H1(D�) then the �nal success probability of the
adversary gets

O
⇣
q3↵+ q2↵2H1(D�) + q22�H1(D�)

⌘

which gives us the constraints H1(D�) � 2� and ↵  2�4�, to avoid sub-exponential attacks.
The former indicates that the well-spread distribution should have a domain of size at least
22�. The latter holds in all the known hidden order group: if B > 24� (which is true in all
commonly used hidden order groups) then from the prime number theorem ↵(GroupGen(1�)) ⇡
2�4�+log 4� ln 2.
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ADVANCED VECTOR
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6
INCREMENTALLY AGGREGATABLE VECTOR COM-
MITMENTS

The results of this chapter appear in a paper under the title "Incrementally Aggregatable Vector
Commitments and Applications to Veri�able Decentralized Storage" published at the ASI-
ACRYPT 2020 conference [59].

6.1 Technical Contributions

The main technical contributions of the chapter are:

• De�ning the notion of Incrementally Aggregatable SVCs. We put forth the notion of
incremental aggregation of (sub)Vector Commitments. We formalize the notion providing
proper de�nitions.

• Precomputation for Incrementally Aggregatable SVCs. To overcome the barrier of gener-
ating each opening in linear time35 O�(n), we propose an alternative preprocessing-based
method. The idea is to precompute at commitment time an auxiliary information consisting of
n/B openings, one for each batch of B positions of the vector. Next, to generate an opening
for an arbitrary subset ofm positions, one uses the incremental aggregation property in order
to disaggregate the relevant subsets of precomputed openings, and then further aggregate for
them positions. Concretely, with this method, in our construction we can do the preprocessing
in time O�(n log n) and generate an opening form positions in time roughly O�(mB log n).
With the VC of [40], a limited version of this approach is also viable: one precomputes an
opening for each bit of the vector in O�(n log n) time; and then, at opening time, one uses
their one-hop aggregation to aggregate relevant openings in time roughly O�(m log n). This
however comes with a huge drawback: one must store one opening (of size p(�) = poly(�)
where � is the security parameter) for every bit of the vector, which causes a prohibitive
storage overhead, i.e., p(�) · n bits in addition to storing the vector v itself.
With incremental aggregation, we can instead tune the chunk size B to obtain �exible time-
memory tradeoffs.
35We use the notation O�(·) to include the factor depending on the security parameter �. Writing “O�(t)”

essentially means “O(t) cryptographic operations”.
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• Constructing VCs with incremental aggregation. Turning to realizing SVC schemes with
our new incremental aggregation property, we propose two SVC constructions that work in
hidden-order groups [87] (instantiatable using classical RSA groups, class groups [49] or the
recently proposed groups from Hyperelliptic Curves [94]).
Our �rst SVC has constant-size public parameters and constant-size subvector openings, and
its security relies on the Strong RSA assumption and an argument of knowledge in the generic
group model. Asymptotically, its ef�ciency is similar to the SVC of Boneh et al. [40], but
concretely we outperform [40].
For the second construction, we show how to modify the RSA-based SVC of [145] (which in
turn extends the one of [66] to support subvector openings) in order to make it with constant-
size parameters and to achieve incremental aggregation. Compared to the �rst construction, it
is more ef�cient and based on more standard assumptions, in the standard model.

• Ef�cient Arguments of Knowledge of Subvector Opening. As an additional result, we
propose ef�cient arguments of knowledge (AoK) with constant-size proofs for our �rst VC.
The �rst AoK can prove knowledge of the subvector that opens a commitment at a public set
of positions, and it extends to proving that two commitments share a common subvector. The
second AoK is similar except that the subvector one proves knowledge of is also committed;
essentially one can create two vector commitments C and C 0 together with a short proof that
C 0 is a commitment to a subvector of the vector committed in C.
An immediate application of our �rst AoK is a keyless proof of storage (PoS) protocol with
compact proofs. PoS allows a client to verify that a server is storing intactly a �le via a short-
communication challenge-response protocol. A PoS is said keyless if no secret key is needed
by clients, a property useful in open systems where the client is a set of distrustful parties
(e.g., veri�ers in a blockchain) and the server may even be one of these clients. A classical
keyless PoS is based on Merkle trees and random spot-checks [135], recently generalized to
work with vector commitments [105]. A drawback of this construction is that proofs grow
with the number of spot-checks (and the size of the tree) and become undesirably large in
some applications, e.g., if need to be stored in a blockchain. With our AoK we can obtain
openings of �xed size, as short as 2KB, which is 40x shorter than those based on Merkle trees
in a representative setting without relying on SNARKs (that would be unfeasible in terms of
time and memory)36.

• De�ning VDS.We de�ne VDS as a collection of algorithms that capture all the properties
above; these are the algorithms that can be executed by clients and storage nodes to maintain
the system. A client for a �le F is anyone who holds a digest �F with which it can: verify
retrieval queries, verify and apply updates of F (that result in forks of �F into some other
�F 0). A storage node for some blocks FI = {Fi}i2I of a �le F is anyone that in addition to
FI stores the digest �F and a local state stFI with which it can: answer and certify retrieval
queries for any subset of FI ; push and certify updates of F that involve blocks in FI ; verify
and apply updates of F from other nodes. Finally, any node can aggregate retrieval certi�cates
for different blocks of the same �le.
In our VDS notion, an update of F can be: (i) a modi�cation of some blocks, (ii) appending
new blocks, or (iii) deleting some blocks (from the end). In all cases, an update of F results
36We provide further details in Section 6.6
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into a �le F 0 and a new digest �F 0 .

In terms of ef�ciency, in VDS the digests and every certi�cate (for both retrieval queries or
modi�cations) are required to be of size at most O(log |F |); similarly, the storage node’s local
state stFI has size at most O(|FI |+ log |F |). In a nutshell, no node should run linearly in the
size of the �le (unless it is explicitly storing it in full).

The main security property of a VDS scheme intuitively requires that no ef�cient adversary
can create a certi�cate for falsi�ed data blocks (or updates) that passes veri�cation. As an
extra security property, we also consider the possibility that anyone holding a digest �F can
check if the DSN is storing correctly F without having to retrieve it. Namely, we let VDS
provide a Proof of Storage mechanism, which we de�ne similarly to Proof of Retrievability
[135] and Proof of Data Possession [10]. Similarly to the case of data retrieval queries, the
creation of these proofs of storage must be possible while preserving the aforementioned
properties of locality and no-central-coordination.

• Constructing VDS.We propose two constructions of VDS in hidden-order groups. Both our
VDS schemes are obtained by extending our �rst and second SVC scheme respectively, in order
to handle updates and to ensure that all such update operations can be performed locally. In
particular we show crucial use of the new properties of our construction: subvector openings,
incremental aggregation and disaggregation, and arguments of knowledge for sub-vector
commitments (the latter for the �rst scheme only).

Our two VDS schemes are based on the Strong RSA [18] and Strong distinct-prime-product
root [145], and Low Order [39] assumptions and have similar performances. The second
scheme has the interesting property that the storage node can perform and propagate updates
by running in time that is independent of even its total local storage. Our �rst scheme instead
supports an additional type of update that we call “CreateFrom”. In it, a storage node holding
a pre�x F 0 of a �le F can publish a new digest �F 0 corresponding to F 0 as a new �le and
convince any client about its correctness without the need for the client to know neither F
nor F 0.37 As a potential use case for this feature, consider a network that is supposed to store
the entire editing history of some data (e.g., one or more �les of a Git project); namely the
i-th block of the VDS �le contains the data value after the i-th edit (e.g., the i-th Git commit).
Then “CreateFrom” can be used to veri�ably create a digest of any past version of the data
(e.g., of a fork at any point in the past). Finally, our approach is not limited to a pre�x of the
�le but to whatever subset of indices we want to create the new �le from.

It is worth noting that by abstracting the ideas of our constructions, other VDS schemes
can be obtained using Merkle trees or RSA accumulators.38 Compared to a Merkle-tree
based solution, we can achieve constant-size certi�cates for every operation as well as to
(ef�ciently) support compact proofs of storage without expensive SNARKs39. Compared to
RSA Accumulators, our �rst VDS scheme takes advantage of our AoK thanks to which it
supports CreateFrom updates and compact proofs of storage.

Finally, we note that VDS shares similarities with the notion of updatable VCs [66] extended
37This can be seen as a deletion that can be performed without holding the blocks to be deleted and is more ef�cient

to verify when the pre�x F 0 is much smaller than F .
38In fact, a similar idea from RSA accumulators was discussed in [40].
39In Merkle trees certi�cates depend logarithmically on the �le size and linearly on the number of blocks (since

they are not aggregatable).
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with incrementally aggregatable subvector openings. There are two main differences. First, in
VDS updates can be applied with the help of a short advice created by the party who created
the update, whereas in updatable VC this is possible having only the update’s description.
The second difference is that in VDS the public parameters must be short, otherwise nodes
could not afford storing them. This is not necessarily the case in VCs and in fact, to the best
of our knowledge, there exists no VC construction with short parameters that is updatable
(according to the updatability notion of [66]) and has incrementally aggregatable subvector
openings. We believe this is an interesting open problem.

6.2 Building Blocks

6.2.1 Succinct Arguments of Knowledge for Hidden Order Groups.

We recall two concrete succinct AoK protocols for the exponentiation relation in groups of
unknown order that have been recently proposed by Boneh et. al. [40]. Both protocols work for
a hidden order group G generated by Ggen in which the adaptive root assumption holds. Also,
they are public-coin protocols that can be made non-interactive in the random oracle model
using the Fiat-Shamir [101] heuristic and its generalization to multi-round protocols [26].

1. Protocol PoE: is an argument system for the following relation:

RPoE =
�
((u,w, x) 2 G2 ⇥ Z,?) : ux = w 2 G

 

PoE is a sound argument system under the adaptive root assumption for Ggen. It is neither
zero-knowledge nor knowledge sound. Its main feature is succinctness, as the veri�er can get
convinced about ux = w without having to execute the exponentiation herself. Moreover the
information sent by the prover is only 1 group element.40

2. Protocol PoKE: is an argument of knowledge for the following relation, parametrized by a
generator g 2 G:

RPoKE =
�
(w, x) 2 G⇥ Z : gx = w 2 G

 

PoKE is an argument of knowledge that in [40] is proven secure in the generic group model
for hidden order groups [87]. This protocol is also succinct consisting of only 1 group element
and 1 �eld element in Z2� .

3. Protocol PoKE2: is an argument of knowledge for the following relation, parametrized by a
generator g 2 G:

RPoKE2 =
�
((w, u) 2 G2, x 2 Z) : ux = w 2 G

 

PoKE2 is similar to PoKE but it is secure for arbitrary bases u chosen by the adversary, instead
of bases randomly sampled a priori as in PoKE. Similarly, it is an argument of knowledge in
the generic group model for hidden order groups and is also succinct, with a proof consisting
of 2 group elements and 1 element of Z2� .
40Technically, this protocol is not succinct as there is no witness and the veri�er must read and process the exponent

x; however, veri�cation is still more ef�cient than running the full exponentiation.

119



CHAPTER 6. INCREMENTALLY AGGREGATABLE VECTOR COMMITMENTS

6.3 Vector Commitments with Incremental Aggregation

In this section, we recall the notion of vector commitment with subvector openings [66, 145, 40]
and then we formally de�ne our new incremental aggregation property.

Vector Commitments with Specializable Universal CRS. The notion of VCs de�ned above
slightly generalizes the previous ones in which the generation of public parameters (aka common
reference string) depends on a bound n on the length of the committed vectors. In contrast, in
our notion Setup is length-independent. To highlight this property, we also call this primitive
vector commitments with universal CRS.
Here we formalize a class of VC schemes that lies in between VCs with universal CRS

(as de�ned above) and VCs with length-speci�c CRS (as de�ned in [66]). Inspired by the
recent work of Groth et al. [127], we call these schemes VCs with Specializable (Universal)
CRS. In a nutshell, these are schemes in which the algorithms Com,Open and Ver work on
input a length-speci�c CRS ppn. However, this ppn is generated in two steps: (i) a length-
independent, probabilistic setup pp Setup(1�,M), and (ii) a length-dependent, deterministic
specialization ppn  Specialize(pp, n). The advantage of this model is that, being Specialize
deterministic, it can be executed by anyone, and it allows to re-use the same pp for multiple
vectors lengths.

De�nition 28 (VCs with Specializable CRS). A VC scheme VC has a specializable CRS if
there exists a DPT algorithm Specialize(pp, n) that, on input a (universal) CRS pp generated
by Setup(1�,M) and an integer n = poly(�), produces a specialized CRS ppn such that the
algorithms Com, Open and Ver can be de�ned in terms of algorithms Com?, Open? and Ver?

as follows:

• Com(pp,v) sets n := |v|, runs ppn  Specialize(pp, n) and (C?, aux?) Com?(ppn,v),
and returns C := (C?, n) and aux := (aux?, n).

• Open(pp, I,y, aux) parses aux := (aux?, n), runs ppn  Specialize(pp, n) and returns
⇡I  Open?(ppn, I,y, aux

?).

• Ver(pp, C, I,y,⇡I) parses C := (C?, n), runs ppn  Specialize(pp, n) and returns
Ver?(ppn, C

?, I,y,⇡I).

Basically, for a VC with specializable CRS it is suf�cient to describe the algorithms Setup,
Specialize,Com?,Open? and Ver?. Furthermore, a concrete advantage is that when working
on multiple commitments, openings and veri�cations that involve the same length n, one can
execute ppn  Specialize(pp, n) only once.

6.3.1 Incrementally Aggregatable Subvector Openings

In a nutshell, aggregation means that different proofs of different subvector openings can be
merged together into a single short proof which can be created without knowing the entire
committed vector. Moreover, this aggregation is composable, namely aggregated proofs can be
further aggregated. Following a terminology similar to that of aggregate signatures, we call this
property incremental aggregation (but can also be called multi-hop aggregation). In addition to
aggregating openings, we also consider the possibility to “disaggregate” them, namely from an
opening of positions in the set I one can create an opening for positions in a setK ⇢ I .
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We stress on the twomain requirements that make aggregation and disaggregation non-trivial:
all openings must remain short (independently of the number of positions that are being opened),
and aggregation (resp. disaggregation) must be computable locally, i.e., without knowing the
whole committed vector. Without such requirements, one could achieve this property by simply
concatenating openings of single positions.

De�nition 29 (Aggregatable Subvector Openings). A vector commitment scheme VC with
subvector openings is called aggregatable if there exists algorithms VC.Agg, VC.Disagg working
as follows:

VC.Agg(pp, (I,vI ,⇡I), (J,vJ ,⇡J))! ⇡K takes as input two triples (I,vI ,⇡I), (J,vJ ,⇡J)
where I and J are sets of indices, vI 2 M|I| and vJ 2 M|J | are subvectors, and ⇡I and
⇡J are opening proofs. It outputs a proof ⇡K that is supposed to prove opening of values in
positionsK = I [ J .

VC.Disagg(pp, I,vI ,⇡I ,K)! ⇡K takes as input a triple (I,vI ,⇡I) and a set of indicesK ⇢
I , and it outputs a proof ⇡K that is supposed to prove opening of values in positionsK.

The aggregation algorithm VC.Agg must guarantee the following two properties:

Aggregation Correctness. Aggregation is (perfectly) correct if for all � 2 N, all honestly gener-
ated pp Setup(1�,M), any commitment C and triple (I,vI ,⇡I) s.t. Ver(pp, C, I,vI ,⇡I) =
1, the following two properties hold:

1. for any triple (J,vJ ,⇡J) such that Ver(pp, C, J,vJ ,⇡J) = 1,

Pr
⇥
Ver(pp, C,K,vK ,⇡K) = 1 : ⇡K VC.Agg(pp, (I,vI ,⇡I), (J,vJ ,⇡J))

⇤
=1

whereK = I [ J and vK is the ordered union vI[J of vI and vJ ;

2. for any subset of indicesK ⇢ I ,

Pr
⇥
Ver(pp, C,K,vK ,⇡K) = 1 : ⇡K  VC.Disagg(pp, I,vI ,⇡I ,K)

⇤
= 1

where vK = (vil)il2K , for vI = (vi1 , . . . , vi|I|).

Aggregation Conciseness. There exists a �xed polynomial p(·) in the security parameter such
that all openings produced by VC.Agg and VC.Disagg have length bounded by p(�).

We remark that the notion of specializable CRS can apply to aggregatable VCs as well. In this
case, we let VC.Agg? (resp. VC.Disagg?) be the algorithm that works on input the specialized
ppn instead of pp.

6.4 Applications of Incremental Aggregation

We discuss two general applications of the incremental aggregation property of vector commit-
ments.
One application is generating subvector openings in a distributed and decentralized way.

Namely, assume a set of parties hold each an opening of some subvector. Then it is possible
to create a (concise) opening for the union of their subvectors by using the VC.Agg algorithm.
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Moreover, the incremental (aka multi-hop) aggregation allows these users to perform this
operation in an arbitrary order, hence no coordination or a central aggregator party are needed.
This application is particularly useful in our extension to veri�able decentralized storage.
The second application is to generate openings in a faster way via preprocessing. As we

mentioned in the introduction, this technique is useful in the scenario where a user commits to a
vector and then must generate openings for various subvectors, which is for example the use
case when the VC is used for proofs of retrievability and IOPs [40].

So, here the goal is to achieve a method for computing subvector openings in time sub-linear
in the total size of the vector, which is the barrier in all existing constructions. To obtain this
speedup, the basic idea is to (A) compute and store openings for all the position at commitment
time, and then (B) use the aggregation property to create an opening for a speci�c set of positions.
In order to obtain ef�ciency using this approach it is important that both steps (A) and (B) can
be computed ef�ciently. In particular, step (A) is challenging since typically computing one
opening takes linear time, hence computing all of them would take quadratic time.
In this section, we show how steps (A) and (B) can bene�t from disaggregation and aggre-

gation respectively. As a preliminary for this technique, we begin by describing two generic
extensions of (incremental) aggregation (resp. disaggregation) that support many inputs (resp.
outputs). Then we show how these extended algorithms can be used for committing and opening
with preprocessing.

6.4.1 Divide-and-Conquer Extensions of Aggregation and Disaggregation

We discuss how the incremental property of our aggregation and disaggregation can be used to
de�ne two extended versions of these algorithms. The �rst one is an algorithm that can aggregate
many openings for different sets of positions into a single opening for their union. The second
one does the opposite, namely it disaggregates one opening for a set I into many openings for
partitions of I .

6.4.1.1 Aggregating Many Openings

We consider the problem of aggregating several openings for sets of positions I1, . . . , Im into a
single opening for

Sm
j=1 Ij . Our syntax in De�nition 29 only considers pairwise aggregation.

This can be used to handle many aggregations by executing the pairwise aggregation in a
sequential (or arbitrary order) fashion. Sequential aggregation might however be costly since
it would require executing VC.Agg on increasingly growing sets. If fa(k) is the complexity
of VC.Agg on two sets of total size k, then the total complexity of the sequential method isPm

j=2 f(
Pj�1

l=1 |Il|+ |Ij |), which for example is quadratic inm, for fa(k) = ⇥(k).
In Fig. 6.1, we show an algorithm, VC.AggManyToOne, that is a nearly optimal solution for

aggregatingm openings based on a divide-and-conquer methodology. Assuming for simplicity
that all Ij’s have size bounded by some s, then the complexity of VC.AggManyToOne is given
by the following recurrence relation:

T (m) = 2T
⇣m
2

⌘
+ fa(s ·m)

which for example solves to ⇥(s ·m logm) if fa(n) 2 ⇥(n), or to ⇥(s ·m log(sm) logm) if
fa(n) 2 ⇥(n log n).
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VC.AggManyToOne(pp, (Ij ,vIj ,⇡j)j2[m])

1 : if m = 1 return ⇡1

2 : m0  m/2

3 : L [m
0

j=1Ij , R [mj=m0+1Ij ,

4 : ⇡L  VC.AggManyToOne(pp, (Ij ,vIj ,⇡j)j=1,...,m0)

5 : ⇡R  VC.AggManyToOne(pp, (Ij ,vIj ,⇡j)j=m0+1,...,m)

6 : ⇡L[R  VC.Agg(pp, (L,vL,⇡L), (R,vR,⇡R))

7 : return ⇡L[R

VC.DisaggOneToMany(pp, B, I,vI ,⇡I)

1 : if n = |I| = B return ⇡I

2 : n0  n/2

3 : L [n
0

j=1ij , R [mj=n0+1ij ,

4 : ⇡0
L  VC.Disagg(pp, I,vI ,⇡I , L)

5 : ⇡0
R  VC.Disagg(pp, I,vI ,⇡I , R)

6 : ⇡L  VC.DisaggOneToMany(pp, B, L,vL,⇡
0
L)

7 : ⇡R  VC.DisaggOneToMany(pp, B,R,vR,⇡
0
R)

8 : return ⇡L||⇡R

Figure 6.1: Extensions of Aggregation and Disaggregation

6.4.1.2 Disaggregating from One to Many Openings

We consider the problem that is dual to the one above, namely how to disaggregate an opening
for a set I into several openings for sets I1, . . . , Im that form a partition of I . Our syntax in
De�nition 29 only considers disaggregation from one set I to one subsetK of I . Similarly to
the aggregation case, disaggregating from one set to many subsets can be trivially obtained via
a sequential application of VC.Disagg on all pairs (I, Ij). This however can be costly if the
number of partitions approaches the size of I , e.g., if we want to disaggregate to all the elements
of I .

In Fig. 6.1, we show an algorithm, VC.DisaggOneToMany, we show a divide-and-conquer
algorithm for disaggregating an opening for a set I of sizem intom0 = m/B openings, each
for a partition of size B. For simplicity, we assume thatm is a power of 2, and B | m.

Let fd(|I|) be the complexity ofVC.Disagg. Then the complexity ofVC.DisaggOneToMany
is given by the following recurrence relation:

T (m) = 2T
⇣m
2

⌘
+ 2fd(m/2)

which for example solves to ⇥(m log(m/B)) if fd(n) 2 ⇥(n), or to ⇥(m logm log(m/B)) if
fd(n) 2 ⇥(n log n).

6.4.2 Committing and Opening with Precomputation

We present a construction of committing and opening algorithms (denoted VC.PPCom and
VC.FastOpen respectively) that works generically for any SVC with incremental aggregation
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and that, by relying on preprocessing, can achieve fast opening time.
Our preprocessing method works with a �exible choice of a parameter B that allows for

different time-memory tradeoffs. In a nutshell, ranging from 1 to n, a larger B reduces memory
but increases opening time while a smaller B (e.g., B = 1) requires larger storage overhead but
gives the fastest opening time.
Let B be an integer that divides n, and let n0 = n/B. The core of our idea is that, during

the commitment stage, one can create openings for n0 = n/B subvectors of v that cover the all
vector (e.g., B contiguous positions). Let ⇡P1 , . . . ,⇡Pn0 be such openings; these elements are
stored as advice information.

Next, in the opening phase, in order to compute the opening for a subvector vI ofm positions,
one should: (i) fetch the subset of openings ⇡Pj such that, for some S, I ✓ [j2SPj , (ii) possibly
disaggregate some of them and then aggregate in order to compute ⇡I .
To give a very general example of the above process, assume one has stored ⇡{1,2} and

⇡{3,4,5} and is asked for ⇡{2,3}, then she has to compute �rst ⇡2 and ⇡3 by disaggregating ⇡{1,2}
and ⇡{3,4,5} respectively, and then aggregate them to ⇡{2,3}. Below are two more examples in
picture:

B = 2:
v1 v2 v3 v4 v5

1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 0
⇡{1,2} ⇡{3,4} ⇡{5}

⇡ p(�) · n/2 bits in opening advice

B = n:
v1 v2 v3 v4 v5

1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 0
⇡{1,2,3,4,5}

p(�) bits in opening advice

The two algorithms VC.PPCom and VC.FastOpen are described in detail in Fig. 6.2.

In terms of auxiliary storage, in addition to the vector v itself, one needs at most (n/B)p(�)
bits, where p(�) is the polynomial bounding the conciseness of the SVC scheme. In terms of time
complexity, VC.PPCom requires one execution of Com, one execution of Open, and one ex-
ecution of VC.DisaggOneToMany, which in turn depends on the complexity of VC.Disagg;
VC.FastOpen requires to perform (at most) |S| disaggregations (each with a set |Ij | such
that their sum is |I|)41, and one execution of VC.AggManyToOne on |S| openings. Note that
VC.FastOpen’s running time depends only on the sizem of the set I and size B of the buckets
Pj , and thus offers various tradeoffs by adjusting B.

More speci�c running times depend on the complexity ofCom,Open,VC.Agg, andVC.Disagg
of the given SVC scheme. See Appendix 6.10 for these results for our construction.

6.5 Our Realizations of Incrementally Aggregatable Vector Com-
mitments

In this section we describe our new SVC realizations.
41Note that for B = 1 the disaggregation step can be skipped.
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VC.PPCom(pp, B,v)

1 : (C, aux) Com(pp,v)

2 : ⇡⇤  Open(pp, [n],v, aux)

3 : ⇡  VC.DisaggOneToMany(pp, B, [n],v,⇡⇤)

4 : aux⇤ := (⇡1, . . . ,⇡n0 ,v)

5 : return C, aux⇤

VC.FastOpen(pp, B, aux⇤, I)

1 : Let Pj := {(j � 1)B + i : i 2 [B]}, 8j 2 [n0]

2 : Let I := {i1, . . . , im}

3 : Let S minimal set s.t.
[

j2S

Pj ◆ I

4 : for j 2 S do :

5 : Ij  I \ Pj

6 : ⇡0
j  VC.Disagg(pp, Pj ,vPj ,⇡j , Ij)

7 : endfor

8 : ⇡I  VC.AggManyToOne(pp, ((Ij ,vIj ,⇡
0
j))j2S)

9 : return ⇡I

Figure 6.2: Generic algorithms for committing and opening with precomputation.

6.5.1 Our First SVC Construction

An overview of our techniques. The basic idea underlying our VC can be described as a
generic construction from any accumulator with union proofs. Consider a vector of bits v =
(v1, . . . , vn) 2 {0, 1}n. In order to commit to this vector we produce two accumulator, Acc0 and
Acc1, on two partitions of the set S = {1, . . . , n}. Each accumulator Accb compresses the set of
positions i such that vi = b. In other words, Accb compresses the set S=b := {i 2 S : vi = b}
with b 2 {0, 1}. In order to open to bit b at position i, one can create an accumulator membership
proof for the statement i 2 S̃b where we denote by S̃b the alleged set of positions that have value
b.

However, if the commitment to v is simply the pair of accumulators (Acc0,Acc1) we do not
achieve position binding as an adversary could for example include the same element i in both
accumulators. To solve this issue we set the commitment to be the pair of accumulators plus a
succinct non-interactive proof ⇡S that the two sets S̃0, S̃1 they compress constitute together a
partition of S. Notably, this proof ⇡S guarantees that each index i is in either S̃0 or S̃1, and thus
prevents an adversary from also opening the position i to the complement bit 1� b.
The construction described above could be instantiated with any accumulator scheme that

admits an ef�cient and succinct proof of union. We, though, directly present an ef�cient
construction based on RSA accumulators [?, 18, 57, 152, 40] as this is ef�cient and has some
nice extra properties like aggregation and constant-size parameters. Also, part of our technical
contribution to construct this VC scheme is the construction of ef�cient and succinct protocols
for proving the union of two RSA accumulators built with different generators.
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Setup(1�) : run G $Ggen(1�), g1, g2, g3 $G, set crs := (G, g1, g2, g3).
Prover’s input: (crs, (Y,C), (a, b)). Veri�er’s input: (crs, (Y,C)).

V! P: ` $P(1, 2�)
P! V: ⇡ := ((QY , QC), ra, rb) computed as follows

• (qa, qb, qc) (ba/`c, bb/`c, bab/`c)
• (ra, rb) (a mod `, b mod `)

• (QY , QC) := (gqa1 gqb2 , gqc3 )

V(crs, (Y,C), `,⇡):

• Compute rc  ra · rb mod `

• Output 1 iff ra, rb 2 [`] ^ Q`
Y g

ra
1 grb2 = Y ^ Q`

Cg
rc
3 = C

Figure 6.3: PoProd2 protocol

6.5.1.1 Succinct AoK Protocols for Union of RSA Accumulators

Let G be a hidden order group as generated by Ggen, and let g1, g2, g3 2 G be three honestly
sampled random generators. We propose a succinct argument of knowledge for the following
relation

RPoProd2 =
�
((Y,C), (a, b)) 2 G2 ⇥ Z2 : Y = ga1g

b
2 ^ C = ga·b3

 

Our protocol (described in Fig. 6.3) is inspired by a similar protocol of Boneh et al. [40], PoDDH,
for a similar relation in which there is only one generator (i.e., g1 = g2 = g3, namely for DDH
tuples (ga, gb, gab)). Their protocol has a proof consisting of 3 groups elements and 2 integers
of � bits.

As we argue later PoProd2 is still suf�cient for our construction, i.e., for the goal of proving
that C = gc3 is an accumulator to a set that is the union of sets represented by two accumulators
A = ga1 and B = gb2 respectively. The idea is to invoke PoProd2 on (Y,C) with Y = A ·B.
To prove the security of our protocol we rely on the adaptive root assumption and, in a

non-black-box way, on the knowledge extractability of the PoKRep and PoKE protocols from
[40]. The latter is proven in the generic group model for hidden order groups (where also the
adaptive root assumption holds), therefore we state the following theorem.

Theorem 20. The PoProd2 protocol is an argument of knowledge for RPoProd2 in the generic
group model.

Proof. For ease of exposition we show a security proof for a slight variant of the protocol
PoProd2. Then, towards the end of this proof we show that security of this variant implies
security for our protocol. We let PoProd20 be the same protocol as PoProd2 with only difference
that the prover computes also rc  ra · rb (mod `) and sends rc in the proof, and the veri�er V
checks in the veri�cation if rc = ra · rb (mod `).

Let A0 = (A0
0,A0

1) be an adversary of the Knowledge Extractability of PoProd2
0 such that:

((Y,C), state)  A0
0(crs), A0

1(crs, (Y,C), state) executes with V(crs, (Y,C)) the protocol
PoProd2

0 and the veri�er accepts with a non-negligible probability ✏. We will construct an
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extractor E 0 that having access to the internal state ofA0
1 and on input (crs, (Y,C), state), outputs

a witness (a, b) of RPoProd20 with overwhelming probability and runs in (expected) polynomial
time.
To prove knowledge extractability of PoProd20 we rely on the knowledge extractabil-

ity of the protocol PoKRep from [40], which is indeed implicit in our protocol. More pre-
cisely, given a PoProd20 execution between A0 and V , (`, QY , QC , ra, rb, rc), E 0 constructs
an adversary AY = (AY,0,AY,1) of PoKRep Knowledge Extractability and, by using the
input and internal state of A0

1, simulates an execution between AY and V: AY,0 outputs
(crsY , Y, state) := ((G, g1, g2), Y, state), AY,1 outputs (QY , ra, rb). It is obvious that if the
initial execution is accepted by V so is the PoKRep execution. From Knowledge Extractability
of PoKRep we know that there exists an extractor EY corresponding to AY,1 that outputs (a, b)
such that ga1gb2 = Y . Additionally, it is implicit from the extraction that a = ra (mod `) and
b = rb (mod `) (for more details we refer to the Knowledge Extractability proof of PoKRep in
[40]). So, E 0 uses EY and gets (a, b). Similarly, it simulates PoKE for gc3 = C, uses the extractor
Ec and gets c.

As one can see, the expected running time of E 0 is the (expected) time to obtain a successful
execution of the protocol plus the running time of the 2 extractors: 1

✏ + tEY + tEc = poly(�).
Now what is left to prove to conclude our theorem is to show that the extracted a, b, c

are such that a · b = c with all but negligible probability. To this end, we observe that we
could run E 0 a second time using a different random challenge `0; by using again EY , Ec (after
simulating the corresponding PoKRep and PoKE executions) we would get a0, b0, c0 such that
ga

0
1 gb

0
2 = Y = ga1g

b
2, gc

0
3 = C = gc3. We argue that a = a0, b = b0 and c = c0 holds over

the integers with overwhelming probability under the assumption that computing a multiple
of the order of the group G is hard (such assumption is in turn implied by the adaptive root
assumption). If such event does not hold one can make a straightforward reduction to this
problem. Therefore, we proceed by assuming that from the two executions we have a = a0,
b = b0, and c = c0 over the integers. Moreover, since both executions are accepted we have
r0c = r0a · r0b (mod `0) ) c0 = a0 · b0 (mod `0) ) c = a · b (mod `0), but `0 was sampled
uniformly at random from P(�) after a, b, c were determined. So a · b = c over the integers,
unless with a negligible probability  #{factors of ab�c}

|P(�)|  poly(�)
|P(�)| = negl(�).

Finally, it is trivial to reduce the Knowledge Extractability of PoProd2 to Knowledge
Extractability of PoProd20. Let a generic adversary A against the Knowledge Extractability
of protocol PoProd2 such that the veri�er accepts with a non-negligible probability ✏, we
can construct a generic adversary A0 against Knowledge Extractability of PoProd20, so that
the veri�er accepts with the same probability. A0 runs the crs  Setup(1�) algorithm and
sends crs to A. The adversary A outputs ((Y,C), state) A0(crs) and sends it to A0

0, which
outputs as it is. Then A0

1 interacts with V in the protocol PoProd20 (as a prover) and at the
same time with A1 in PoProd2 (as a veri�er). After receiving ` from V it forwards it to
A1. A1 answers with ⇡ := ((QY , QC), ra, rb). A0

1 computes rc  rarb mod ` and sends
⇡0 := ((QY , QC), ra, rb, rc) to V . The veri�er V accepts ⇡0 with the same probability that a
veri�er of PoProd2 would accept ⇡ since rc = rarb mod ` in both cases. From Knowledge
Extractability of PoProd20 we know that there is an extractor E 0 that outputs a witness (a, b).
Then E = E 0 is a valid extractor for PoProd2.

In Appendix 6.9 we give a protocol PoProd that proves ga1 = A ^ gb2 = B instead of
ga1g

b
2 = Y (i.e., a version of PoDDH with different generators). Despite being conceptually
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simpler, it is slightly less ef�cient than PoProd2, and thus use the latter in our VC construction.

Hash to prime function and non-interactive PoProd2. Our protocols can be made non-interactive
by applying the Fiat-Shamir transform. For this we need an hash function that can be modeled
as a random oracle and that maps arbitrary strings to prime numbers, i.e., Hprime : {0, 1}⇤ !
P(1, 22�)42. A simple way to achieve such a function is to apply a standard hash function
H : {0, 1}⇤ ! {0, 1}2� to an input y together with a counter i, and if py,i = H(y, i) is prime
then output py,i, otherwise continue to H(y, i + 1) and so on, until a prime is found. Due to
the distribution of primes, the expected running time of this method is O(�), assuming that H’s
outputs are uniformly distributed. We do not insist, though, in the previous or any other speci�c
instantiation of Hprime in this work. For more discussion on hash-to-prime functions we refer
to [115, 55, 84, 40, 168].

6.5.1.2 Our First SVC Construction

Now we are ready to describe our SVC scheme. For an intuition we refer the reader to the
beginning of this section. Also, we note that while the intuition was given for the case of
committing to a vector of bits, our actual VC construction generalizes this idea to vectors where
each item is a block of k bits. This is done by creating 2k accumulators, each of them holding
sets of indices i for speci�c positions inside each block vj .

Notation and Building Blocks. To describe our scheme we use the notation below:

• Our message space isM = {0, 1}k. Then for a vector v 2Mn, we denote with i 2 [n] the
vector’s position, i.e., vi 2M, and with j 2 [k] the position of its j’th bit. So vij denotes the
j-th bit in position i.

• We make use of a deterministic collision resistant function PrimeGen that maps integers to
primes. In our construction we do not need its outputs to be random (see e.g., [40] for possible
instantiations).

• As a building block, we use the PoProd2 AoK from the previous section.

• PartndPrimeProd(I,y)! ((aI,1, bI,1), . . . , (aI,k, bI,k)): given a set of indices I = {i1, . . . ,
im} ✓ [n] and a vector y 2Mm, this function computes

(aI,j , bI,j) :=

0

@
mY

l=1:ylj=0

pil ,
mY

l=1:ylj=1

pil

1

A for j = 1, . . . , k

where pi  PrimeGen(i) for all i.

Basically, for every bit position j 2 [k], the function computes the products of primes that
correspond to, respectively, 0-bits and 1-bits.

In the special case where I = [n], we omit the set of indices from the notation of the outputs,
i.e., PartndPrimeProd([n],v) outputs aj and bj .
42As pointed out in [39], although for the interactive version of such protocols the prime can be of size �, the non-

interactive version requires at least a double-sized prime 2�, as an explicit square root attack was presented. Notably,
even in the interactive version a 2�/2-attacker would still be able to succeed in breaking knowledge-soundness with
2��/2 probability, with a �-sized prime.
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• PrimeProd(I)! uI : given a set of indices I , this function outputs the product of all primes
corresponding to indices in I . Namely, it returns uI :=

Q
i2I pi. In the special case I = [n],

we denote the output of PrimeProd([n]) as un.
Notice that by construction, for any I and y, it always holds aI,j · bI,j = uI .

SVC Scheme. Below we describe our SVC scheme and then we show its incremental aggrega-
tion.

Setup(1�, {0, 1}k)! pp generates a hidden order groupG Ggen(1�) and samples three gen-
erators g, g0, g1  G. It also determines a deterministic collision resistant function PrimeGen
that maps integers to primes.
Returns pp = (G, g, g0, g1,PrimeGen)

Specialize(pp, n)! ppn computes un  PrimeProd([n]) and Un = gun , and returns ppn  
(pp, Un). One can think of Un as an accumulator to the set [n].

Com?(ppn,v)! (C?, aux?) does the following:

1. Compute ((a1, b1), . . . , (ak, bk)) PartndPrimeProd([n],v); next,

for all j 2 [k] compute Aj = g
aj
0 and Bj = g

bj
1

One can think of each (Aj , Bj) as a pair of RSA accumulators for two sets that constitute a
partition of [n] done according to the bits of v1j , . . . , vnj . Namely Aj and Bj accumulate
the sets {i 2 [n] : vij = 0} and {i 2 [n] : vij = 1} respectively.

2. For all j 2 [k], compute Cj = Aj · Bj 2 G and a proof ⇡(j)prod  PoProd2.P(pp,
(Cj , Un), (aj , bj)). Such proof ensures that the sets represented by Aj and Bj are a partition
of the set represented by Un. Since Un is part of the CRS (i.e., it is trusted), this ensures the
well-formedness of Aj and Bj .

Return C? :=
⇣
{A1, B1, . . . , Ak, Bk} ,

n
⇡(1)prod, ...,⇡

(k)
prod

o⌘
and aux? := v.

Open?(ppn, I,y, aux
?)! ⇡I proceeds as follows:

• let J = [n] \ I and compute ((aJ,1, bJ,1), . . . , (aJ,k, bJ,k)) PartndPrimeProd(J,vJ);
• for all j 2 [k] compute

�I,j := g
aJ,j
0 and �I,j = g

bJ,j
1

Notice that aJ,j = aj/aI,j and bJ,j = bj/bI,j . Also �I,j is a membership witness for the set
{il 2 I : ylj = 0} in the accumulator Aj , and similarly for �I,j .
Return ⇡I := {⇡I,1, . . . ,⇡I,k} {(�I,1,�I,1), . . . , (�I,k,�I,k)}

Ver?(ppn, C
?, I,y,⇡I)! b computes ((aI,1, bI,1), . . . , (aI,k, bI,k)) using

PartndPrimeProd(I,y), and then returns b bacc ^ bprod where:

bacc  
k̂

j=1

⇣
�
aI,j
I,j = Aj ^�

bI,j
I,j = Bj

⌘
(6.1)

bprod  
k̂

j=1

⇣
PoProd2.V(pp, (Aj ·Bj , Un),⇡

(j)
prod)

⌘
(6.2)
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Remark 17. Formore ef�cient veri�cation,Open? can be changed to include 2k (non-interactive)
proofs of exponentiation PoE (which using the PoKCR aggregation from [40] add only k el-
ements of G). This reduces the exponentiations cost in Ver?. As noted in [40], although the
asymptotic complexity is the same, the operations are in Z22� instead of G, which concretely
makes up an improvement.

The correctness of the vector commitment scheme described above is obvious by inspection
(assuming correctness of PoProd2).

Incremental Aggregation. Here we show that our SVC scheme is incrementally aggregatable.

VC.Disagg(pp, I,vI ,⇡I ,K)! ⇡K . Let L := I \K, and vL be the subvector of vI at positions
in L. Then compute {aL,j , bL,j}j2[k]  PartndPrimeProd(L,vL), and for each j 2 [k] set:

�K,j  �
aL,j

I,j , �K,j  �
bL,j

I,j

and return ⇡K := {⇡K,1, . . . ,⇡K,k} := {(�K,1,�K,1), . . . , (�K,k,�K,k)}
VC.Agg(pp, (I,vI ,⇡I), (J,vJ ,⇡J))! ⇡K := {(�K,1,�K,1), . . . , (�K,k,�K,k)}.

1. Let L := I \ J . If L 6= ;, set I 0 := I \ L and compute ⇡I0  VC.Disagg(pp, I,vI ,⇡I , I 0);
otherwise let ⇡I0 = ⇡I .

2. Compute {aI0,j , bI0,j}j2[k]  PartndPrimeProd(I 0,vI0) and
{aJ,j , bJ,j}j2[k]  PartndPrimeProd(J,vJ).

3. Parse ⇡I0 :=
�
(�I0,j ,�I0,j)

 k
j=1
, ⇡J := {(�J,j ,�J,j)}kj=1, and for all j 2 [k], compute

�K,j  ShamirTrick(�I0,j ,�J,j , aI0,j , aJ,j),

�Kj  ShamirTrick(�I0,j ,�J,j , bI0,j , bJ,j).

Note that our algorithms above can work directly with the universal CRS pp, and do not need
the specialized one ppn.

Aggregation Correctness. The second property of aggregation correctness (the one about
VC.Disagg) is straightforward by construction:
if we let {aK,j , bK,j}j2[k]  PartndPrimeProd(K,vK), then aI,j = aL,j · aK,j , and thus
Aj = �

aI,j
I,j = �

aL,j ·aK,j

I,j = �
aK,j

K,j (and similarly for �K,j).
The �rst property instead follows from the correctness of Shamir’s trick if the integer values

provided as input are coprime; however since I 0 \ J = ;, aI0,j and aJ,j (resp. bI0,j and bJ,j) are
coprime unless a collision occurs in PrimeGen.

Ef�ciency. We summarize the ef�ciency of our construction in terms of both the computational
cost of the algorithms and the communication (CRS, commitment and openings size). For this
analysis we consider an instantiation of PrimeGen with a deterministic function that maps every
integer in [n] into a unique prime number, which can be of ↵ = log n bits.
Our scheme is presented in order to support vectors of length n of k-bits-long strings. We

summarize ef�ciency in terms of k and n. However, we note that k is actually only a parameter
and our scheme can work with any setting of vectors v of length N of `-bits long strings. In this
case, it is suf�cient to �x an arbitrary k that divides ` and to spread each vi 2 {0, 1}` over `/k
positions. For example, for k = 1 with have n = N` and thus the prime size is ↵ = log(N`).
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Setup. In terms of computation, Setup generates the group description and samples 3 generators,
while Specialize computes one exponentiation inGwith an (n↵)-long integer. The CRS consists
of 3 elements of G, and the specialized CRS (for any n) is one group element.

Committing. Committing to a vector v 2 ({0, 1}k)n requires about k exponentiations with an
(n↵)-long integer each. A commitment consists of 4k elements of G and 2k integers in Z22� .

Opening. Creating an opening for a set I ofm positions has about the same cost of committing,
and the opening consists of 2k group elements. Using the PoE to make veri�cation more ef�cient
(see Remark 17) would (naively) result to 4k elements. However, as described in [40], many
PoE’s for coprime exponents can be aggregated into a single group element. In our case, applying
this optimization would result to k group elements for all the PoE’s, which totally gives 3k
group elements for an opening.

Veri�cation. Verifying an opening for set I requires about k exponentiations with (m · ↵)-bit
integers (resp. 4k exponentiations with �-bit integers, 2k multiplications in G and O(km↵)
multiplications in Z22� , when using PoE) to check equation (6.1), plus 5k exponentiations with
2�-bit integers and 3k multiplications in G to verify PoProd2 proofs in equation (6.2).

Aggregation and Disaggregation. Disaggregation requires 2k exponentiations with ((|I| �
|K|)↵)-bit integers, while aggregation requires 2k computations of ShamirTrick that amount
to O(k(|I| + |J |)↵) operations in G. From this, we obtain that VC.AggManyToOne and
VC.DisaggOneToMany take time O(ksm logm↵) G and O(km log(m/B)↵) G, respectively.

Commitment and Opening with Precomputation. Finally, let us summarize the costs of com-
mitting and opening with preprocessing obtained by instantiating our method of Section 6.4.2.
The preprocessing VC.PPCom takes time O(kn↵ log(n/B)). The opening requires comput-
ing at most |S|  m disaggregation, each taking time O(k↵(|Pj | � |Ij |)), for a total of
O(k↵(|S|B � |I|)), followed by the aggregation step that counts O(k↵|S| log |S|). So, in
the worst case VC.FastOpen takes O(k ·m · ↵(log(m) +B � 1)) operations of G.

Security. The security of our SVC scheme, i.e., position binding, can be reduced to the Strong
RSA and Adaptive root assumptions in the hidden order group G used in the construction and to
the knowledge extractability of PoProd2.
A bit more in detail the steps of the proof are as follows. Let an adversary to the position

binding output (C, I,y,⇡,y0,⇡0). First from knowledge extractability of PoProd2 it comes
that AjBj = g

aj
1 g

bj
2 and gajbj = Un = gun . However, this does not necessarily means that

ajbj = un over the integers and to prove it we need the Low Order assumptions, under which it
holds. Afterwards we prove that since AjBj = g

aj
1 g

bj
2 no different proofs ⇡,⇡0 for the same

positions can pass the veri�cation under the strong RSA assumption, which is the core of our
proof. The main caveat of the proof is that instead of knowing that Aj = g

aj
1 and Bj = g

bj
2 we

know only that AjBj = g
aj
1 g

bj
2 . The former case would directly reduce to RSA Accumulator’s

security (strong RSA assumption). For this we �rst need to prove an intermediate lemma (lemma
14) which shows that speci�cally for our case AjBj = g

aj
1 g

bj
2 is enough, since the choice of the

primes pi in the exponent is restricted to a polynomially bounded set.

Theorem 21 (Position-Binding). Let Ggen be the generator of hidden order groups where the
Strong RSA and Low Order assumptions hold, and let PoProd2 be an argument of knowledge
for RPoProd2 . Then the subVector Commitment scheme de�ned above is position binding.

131



CHAPTER 6. INCREMENTALLY AGGREGATABLE VECTOR COMMITMENTS

Proof. To prove the theorem we use a hybrid argument. We start by de�ning the game G0 as
the actual position binding game of De�nition 12, and our goal is to prove that for any PPT A,
Pr[G0 = 1] 2 negl(�).

Game G0:
G0 = PosBindAVC(�)

pp Setup(1�,M)

(C, I,y,⇡,y0,⇡0) A(pp)

b Ver(pp, C, I,y,⇡) = 1 ^ y 6= y0 ^ Ver(pp, C, I,y0,⇡0) = 1

return b

Lemma 10. For any PPT A in game G0 there exists an algorithm E and an experiment G1

such that
Pr[G0 = 1]  Pr[G1 = 1] + negl(�)

Proof. By construction of Com, the commitment C returned by the adversary A in game G0

contains k proofs of PoProd2, and by construction of Ver if G0 returns 1 all these proofs verify.
It is not hard to argue that for any adversary A playing in game G0 there is an extractor E that
outputs the k witnesses {aj , bj}j2[k].

Game G1: is the same as G0 except that we also execute E , which outputs {aj , bj}j2[k], and
we additionally check that Un = gajbj for all j 2 [k]. Below is a detailed description of G1 in
which we “open the box” of the VC algorithms.

G1

pp Setup(1�,M); bad1  false

({Aj , Bj ,⇡
(j)
prod}j2[k], n), I,y, {�I,j ,�I,j}j2[k],y

0, {�0
I,j ,�

0
I,j}j2[k]) A(pp)

{aj , bj}j2[k]  E(pp)
un  PrimeProd(n);Un  gun

bprod  
k̂

j=1

⇣
PoProd2.V(pp, (Aj ·Bj , Un),⇡

(j)
prod)

⌘

bwit  
k̂

j=1

Aj ·Bj = g
aj

0 g
bj
j ^ Un = gaj ·bj

if bprod = 1 ^ bwit = 0 then bad1  true

{aI,j , bI,j}j2[k]  PartndPrimeProd(I,y);
�
a0I,j , b

0
I,j

 
j2[k]

 PartndPrimeProd(I,y0)

b bprod ^
k̂

j=1

⇣
�I,j

aI,j = Aj ^�I,j
bI,j = Bj

⌘
^ y 6= y0^

k̂

j=1

⇣
�0
I,j

a0
I,j = Aj ^�0

I,j
b0I,j = Bj

⌘

if bad1 = true then b 0

return b

Clearly, the games G0 and G1 are identical except if the �ag bad1 is raised true, i.e.,
Pr[G0 = 1]� Pr[G1 = 1]  Pr[bad1 = true]. However, the event in which bad1 is set true is
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the event in which one of the witnesses returned by the extractor is not correct. By the knowledge
extractability of PoProd2 we immediately get that Pr[bad1 = true] 2 negl(�).

GameG2: is the same asG1 except thatG2 outputs 0 if there is an index j such that Un = gaj ·bj

but un 6= aj · bj . Precisely, if this happens a �ag bad2 is set true and the outcome of the
experiment is 0. See below for the detailed description of G2.

G2

pp Setup(1�,M); bad1, bad2  false

({Aj , Bj ,⇡
(j)
prod}j2[k], n), I,y, {�I,j ,�I,j}j2[k],y

0, {�0
I,j ,�

0
I,j}j2[k]) A(pp)

{aj , bj}j2[k]  E(pp)
un  PrimeProd(n);Un  gun

bprod  
k̂

j=1

⇣
PoProd2.V(pp, (Aj ·Bj , Un),⇡

(j)
prod)

⌘

bwit  
k̂

j=1

Aj ·Bj = g
aj

0 g
bj
j ^ Un = gaj ·bj

if bprod = 1 ^ bwit = 0 then bad1  true

bcol  
k̂

j=1

un = aj · bj

if bprod = 1 ^ bcol = 0 then bad2  true

{aI,j , bI,j}j2[k]  PartndPrimeProd(I,y);
�
a0I,j , b

0
I,j

 
j2[k]

 PartndPrimeProd(I,y0)

b bprod ^
k̂

j=1

⇣
�I,j

aI,j = Aj ^�I,j
bI,j = Bj

⌘
^ y 6= y0^

k̂

j=1

⇣
�0
I,j

a0
I,j = Aj ^�0

Ij
b0I,j = Bj

⌘

if bad1 = true _ bad2 = true then b 0

return b

Lemma 11. If the Low Order assumption holds for Ggen, then Pr[G1 = 1] � Pr[G2 = 1] 
negl(�).

Proof. Clearly, G1 and G2 proceed identically except if bad2 is set true. We claim that
Pr[bad2 = true] is negligible for any A, E running in G2. If this event happens, one indeed
obtains an integer v = un � aj · bj such that gv = 1 2 G, where g 6= 1 and 1 < v < 2poly(�),
and solves the Low Order problem.

Game G3: is an experiment that can be seen as a simpli�cation of G2.
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G3

pp Setup(1�,M)

(v, {Aj , Bj}j2[k], I,y, {�I,j ,�I,j}j2[k],y
0, {�0

I,j ,�
0
I,j}j2[k]) A0(pp)

{aj , bj}j2[k]  PartndPrimeProd([n],v)

{aI,j , bI,j}j2[k]  PartndPrimeProd(I,y);
�
a0I,j , b

0
I,j

 
j2[k]

 PartndPrimeProd(I,y0)

b 
k̂

j=1

(Aj ·Bj = g
aj

0 · gbj1 )
k̂

j=1

⇣
�I,j

aI,j = Aj ^�I,j
bI,j = Bj

⌘
^ y 6= y0^

k̂

j=1

⇣
�0
I,j

a0
I,j = Aj ^�0

I,j
b0I,j = Bj

⌘

return b

First, we show the following lemma that relates the probability of winning in G3 with that
of winning in G2.

Lemma 12. For any (A, E) running in G2 there is an A0 running in G3 such that Pr[G2 =
1] = Pr[G3 = 1].

Proof. We build A0 from (A, E) as follows. On input pp, A0 executes
({Aj , Bj ,⇡

(j)
prod}j2[k], n), I,y, {�I,j ,�I,j}j2[k],y0, {�0

I,j ,�
0
I,j}j2[k]) A(pp) and {aj , bj}j2[k]

 E(pp). Next, A0 reconstructs a vector v 2 ({0, 1}k)n from the set {aj , bj}j2[k]. This can
be done by setting vij = 0 if pi | aj and vij = 1 if pi | bj , where pi  PrimeGen(i) (in case
both or neither cases occur, abort). Finally, A0 runs all the checks as in game G2, and if G2

would output 1, thenA0 outputs (v, {Aj , Bj}j2[k], I,y, {�I,j ,�I,j}j2[k],y0, {�0
I,j ,�

0
I,j}j2[k]),

otherwise A0 aborts.
To claim that Pr[G2 = 1] = Pr[G3 = 1], we observe that whenever G2 returns 1 it is the

case that aj · bj = un =
Qn

i=1 pi for all j 2 [k]; therefore A0 never aborts.

Game G4: this is the same as game G3 except that the game outputs 0 if during any com-
putation of lines 3 and 4 it happens that PrimeGen(i) = PrimeGen(i0) for distinct i 6= i0. It
is straightforward to show that the probability of this event is bounded by the probability of
�nding collisions in PrimeGen, i.e., that under the collision resistance of PrimeGen it holds
Pr[G3 = 1]� Pr[G4 = 1] 2 negl(�).

To conclude the proof of our Theorem, we prove that any PPT adversary can win in G4 with
only negligible probability assuming that the strong RSA assumption holds in G.

Lemma 13. If the strong RSA assumption holds for Ggen, then for every PPT adversary A0

running in game G4 we have that Pr[G4 = 1] 2 negl(�).

Proof. For the proof, we rely on the following lemma that de�nes a computational problem that
we prove it is implied by the Strong RSA assumption.

Lemma 14. Let Ggen be a hidden order group generation algorithm where the strong RSA
assumption holds and PrimeGen a deterministic collision resistant function that maps integers to
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primes. Then for any PPT adversaryA and any n = poly(�), the probability below is negligible:

Pr

2

6664

up = ga0 · gb1
^(p - a _ p - b)

^u 2 G ^ (a, b) 2 Z2 ^ p 2 S

:

G Ggen(�)

g0, g1  G
S = {pi  PrimeGen(i)}ni=1

(u, p, a, b) A(G, g0, g1, S)

3

7775
2 negl(�)

We proceed assuming that the lemma holds; its proof is deferred to the end.
Suppose by contradiction the existence of a PPT adversary A0 such that Pr[G4 = 1] = ✏

with ✏ non-negligible. Below we show how to construct an adversary B that uses A0 in order to
solve the problem of Lemma 14 with probability ✏.

• B (G, g0, g1) samples a random g $G, determines a PrimeGen as in Setup, sets
pp (G, g, g0, g1,PrimeGen), and runs A on input pp.

• A(pp) responds with a tuple (v, {Aj , Bj}j2[k], I,y,⇡,y0,⇡0).

• B computes {aj , bj}j2[k]  PartndPrimeProd([n],v),
{aI,j , bI,j}j2[k]  PartndPrimeProd(I,y) and
{a0I,j , b0I,j}j2[k]  PartndPrimeProd(I,y0) as in game G3.

• If A0 wins the game then we have that all the following conditions holds:

y 6= y0,
k̂

j=1

⇣
�I,j

aI,j = Aj ^�I,j
bI,j = Bj

⌘
= 1,

k̂

j=1

⇣
�0
I,j

a0I,j = Aj ^�0
I,j

b0I,j = Bj

⌘
= 1

,
k̂

j=1

(Aj ·Bj = g
aj
0 · gbj1 ).

From y 6= y0 we get that there is at least one pair of indices l 2 [m] and j 2 [k] such that
ylj 6= y0lj . Say wlog that ylj = 0 and y0lj = 1. Also, if we parse I = {i1, . . . , im}, we let
i = il 2 [m]. So we �x these indices i and j, and let pi = PrimeGen(i) be the corresponding
prime.

Notice that by construction of PartndPrimeProd (and since we assumed no collision occurs
in PrimeGen) we have that either pi - aj or pi - bj holds. Additionally, by our assumption that
ylj = 0 and y0lj = 1, the following holds: pi | aI,j , pi - bI,j , pi - a0I,j , pi | b0I,j .
From the other condition on the validity of the proofs, B can compute two group elements
�̂, �̂ such that �̂pi = Aj and �̂pi = Bj .

Combining this with the condition Aj ·Bj = g
aj
0 · gbj1 , we have that (�̂ · �̂)pi = g

aj
0 · gbj1 .

• B sets w = �̂ · �̂ and outputs the tuple (w, pi, aj , bj).

From all the above observations, if A0 makes game G4 return 1, then the tuple returned by B
is a suitable solution for the problem of Lemma 14, which in turn reduces to the Strong RSA
assumption.
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By combining all the lemmas we have that any PPT adversary has at most negligible
probability of breaking the position binding of our SVC scheme.

Proof of Lemma 14. Suppose that for a PPT adversaryA the above probability is a non-negligible
value ✏. We will construct an adversary B that breaks strong RSA assumption with a non-
negligible probability. B takes as input (G, g). We denote as GA the game de�ned in lemma
(parametrized by an adversary A). We de�ne two different reductions:

Reduction 1. In reduction 1 the adversary B breaks strong RSA assumption only in case where
the adversary A outputs a tuple (u, p, a, b) such that p | a (and thus from assumption p - b) and
fails otherwise. B proceeds as follows.

B(G, g) samples � $ [1, 2�maxord(G)], wheremaxord(G) is the upper bound of the order
of G outputted by Ggen(1�) (see Section 3.3), and sets g0  g� , g1  g. B runs A on input
(G, g0, g1). � is sampled from a large enough domain so that g� is statistically close to a uniformly
distributed g0 fromG hence g0, g1 are indistinguishable to two uniformly random elements ofG.
A(G, g0, g1, S) responds with a tuple (u, p, a, b) and sends it to B. We condition our analysis
on the event p | a, meaning that B stops in case p - a.

Assume that up = ga0 · gb1 ^ (p | a^ p - b)^u 2 G^ (a, b) 2 Z2 ^ p 2 S then we will show
that B can break the strong RSA assumption. We argue that p | a leads to gcd(p, �a+ b) = 1.
Let gcd(p, �a + b) 6= 1, meaning that gcd(p, �a + b) = p, then p | �a + b ) �a + b = 0
(mod p). However, p | a) a = 0 (mod p). From the two previous facts we infer that b = 0
(mod p) ) p | b, hence p | a ^ p | b, which is a contradiction. Therefore, assuming that
gcd(p, �a + b) = 1, B uses the extended Euclidean algorithm to compute (↵,�) such that
↵p + �(a� + b) = 1. We know that up = ga0g

b
1 = ga�+b ) u = g

a�+b
p hence it follows that

g1/p = g
↵p+�(a�+b)=1

p = g↵+�
a�+b

p = g↵ · u� . Finally, B outputs (g↵ · u� , p) which is a valid
strong-RSA solution.

Reduction 2. In reduction 2 the adversary B breaks strong RSA assumption only in case where
the adversary A outputs a tuple (u, p, a, b) such that p - a and fails otherwise.

B(G, g) samples � $ [1, 2�maxord(G)], wheremaxord(G) is the upper bound of the order
of G outputted by Ggen(1�) (see Section 3.3), de�nes S := {pi  PrimeGen(i)}ni=1 and
prod 

Qn
i=1 pi and sets g0  g, g1  g�·prod. B sends (G, g0, g1) to A. � is sampled from a

large enough domain so that g� is statistically close to a uniformly distributed g1 from G hence
g0, g1 are indistinguishable to two uniformly random elements of G. A(G, g0, g1, S) responds
with a tuple (u, p, a, b) and sends it to B. We condition our analysis on the event p - a, meaning
that B stops in case p | a.
Assume that up = ga0 · gb1 ^ p - a ^ u 2 G ^ (a, b) 2 Z2 ^ p 2 S then we will show

that B can break the strong RSA assumption. We argue that gcd(p, a + b�prod) = 1. Let
gcd(p, a + b�prod) 6= 1, meaning that gcd(p, a + b�prod) = p, then p | a + b�prod )
a + b�prod = 0 (mod p). However, prod includes p (p 2 S) we know that p | b�prod )
b�prod = 0 (mod p). From the two previous facts we infer that a = 0 (mod p) ) p | a
which is a contradiction. B uses the extended Euclidean algorithm to compute (↵,�) such that
↵p + �(a + b�prod) = 1. We know that up = ga0g

b
1 = ga+b�prod ) u = g

a+b�prod
p hence it

follows that g1/p = g
↵p+�(a+b�prod)=1

p = g↵+�
a+b�prod

p = g↵ · u� . Finally, B outputs (g↵ · u� , p)
which is a valid strong-RSA solution.
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To conclude the proof, notice that:

Pr[GA = 1] = Pr[GA = 1|p | a] Pr[p | a] + Pr[GA = 1|p - a] Pr[p - a]
 Pr[GA = 1|p | a] + Pr[GA = 1|p - a]

The reductions 1 and 2 described above show that under the strong RSA assumption Pr[GA =
1|p | a] and Pr[GA = 1|p - a] respectively are negligible. Hence, we have that Pr[GA = 1] 2
negl(�), which concludes the proof.

On concrete instantiation. Our SVC construction is described generically from a hidden order
group G, an AoK PoProd2, and a mapping to primes PrimeGen. The concrete scheme we
analyze is the one where PoProd2 is instantiated with the non-interactive version of the PoProd2
protocol described in Sec. 6.5.1.1. The non-interactive version needs a hash-to-prime function
Hprime. We note that the same function can be used to instantiate PrimeGen, though for the sake
of PrimeGen we do not need its randomness properties. One can choose a different mapping to
primes for PrimeGen and even just a bijective mapping (which is inherently collision resistant)
would be enough: this is actually the instantiation we consider in our ef�ciency analysis. Finally,
see Section 3.3 for a discussion on possible instantiations of G.

We note that by using the speci�c PoProd2 protocol given in Sec. 6.5.1.1 we are assuming
adversaries that are generic with respect to the group G. Therefore, our SVC is ultimately
position binding in the generic group model.

6.5.2 Our Second SVC Construction

In this section we propose another SVC scheme with constant-size parameters and incremental
aggregation. This scheme builds on the SVC of [145] based on the RSA assumption, which in
turn extends the VC of [66] to support subvector openings. Our technical contribution is twofold.
First, we show that the SVC of [66, 145] can be modi�ed in order to have public parameters and
veri�cation time independent of the vector’s length. Second, we propose new algorithms for
(incremental) aggregation and disaggregation for this SVC.

Our second SVC Construction. Let us start by giving a brief overview of the [66] VC scheme
and of the basic idea to turn it into one with succinct parameters and veri�cation time. In brief,
in [66] a commitment to a vector v is C = Sv1

1 · · ·Svn
n , where each Si := g

Q
j2[n]\{i} ej with

g 2 G a random generator and ej being distinct prime numbers (which can be deterministically
generated using a suitable map-to-primes). The opening for position i is an element ⇤i such that
⇤ei
i · Svi

i = C and the key idea is that such ⇤i is an ei-th root that can be publicly computed as
long as one does it for the correct position i and value vi. Also, as it can be seen, the element Si

is necessary to verify an opening of position i, and thus (S1, . . . , Sn) were included in the public
parameters. Catalano and Fiore observed that it might be possible to remove the Si-s from pp if
the veri�er opts for recomputing Si at veri�cation time at the price of linear-time veri�cation.

Our goal is to obtain constant-size parameters and constant-time veri�cation. To do that we
let the prover compute Si and include it in the opening for position i. To prevent adversaries
from providing false Si’s, we store in the public parameters Un = g

Q
i2[n] ei (i.e., an accumulator

to all positions) so that the veri�er can verify the correctness of Si in constant-time by checking
Sei
i = Un. This technique easily generalizes to subvector openings.
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In the following, we describe the scheme in details and then propose our incremental
aggregation algorithms. To simplify our exposition, we use the following notation: for a set of
indices I ✓ [n], eI :=

Q
i2I ei denotes the product of all primes corresponding to the elements

of I , and SI := g
Q

i2[n]\I ei = ge[n]\I = U1/eI
n (which is a generalization of the former Si),

where, we recall, the ei’s are de�ned from the pp.

Setup(1�, `, n)! pp generates a hidden order group G Ggen(1�) and samples a generator
g $G. It also determines a deterministic collision resistant function PrimeGen that maps
integers to primes.
Returns pp = (G, g,PrimeGen)

Specialize(pp, n)! ppn computes n (`+1)-bit primes e1, . . . , en, ei  PrimeGen(i) for each
i 2 [n], and Un = ge[n] and returns ppn  (pp, Un). One can think of Un as an accumulator
to the set [n].

Com(pp,v)! (C, aux) Computes for each i 2 [n], Si  ge[n]\{i} and then C  Sv1
1 . . . Svn

n

and aux (v1, . . . , vn).

Open(pp, I,y, aux)! ⇡I Computes for each j 2 [n] \ I , S1/eI
j  ge[n]\(I[{j}) and SI  

ge[n]\I and then

⇤I  
nY

j=1,j /2I

⇣
S1/eI
j

⌘yj
=

0

@
nY

j=1,j /2I

S
yj
j

1

A
1/eI

Returns ⇡I := (SI ,⇤I)

Ver(pp, C, I,y,⇡I)! b Parse ⇡I := (SI ,⇤I), and compute Si = S
eI\{i}
I = U1/ei

n for every
i 2 I . Return 1 (accept) if both the following checks hold, and 0 (reject) otherwise:

SeI
I = Un ^ C = ⇤eI

I

Y

i2I
Syi
i

The correctness of the above construction holds essentially the same as the one of the SVC of
[66, 145] with the addition of the SI elements of the openings, whose correctness can be seen
by inspection (and is the same as for RSA accumulators).

Incremental Aggregation. Let us now show that the SVC above has incremental aggregation.
Note that our algorithms also implicitly show that the RSA-based SVC of [145] is incrementally
aggregatable.

VC.Disagg(pp, I,vI ,⇡I ,K)! ⇡K Parse ⇡I := (SI ,⇤I). First compute SK from SI , SK  
S
eI\K
I , and then, for every j 2 I \K, �j = S

1/ej
K , e.g., by computing �j  S

eI\(K[{j})
I .

Return ⇡K := (SK ,⇤K) where

⇤K  ⇤
eI\K
I ·

Y

j2I\K

�
vj
j
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VC.Agg(pp, (I,vI ,⇡I), (J,vJ ,⇡J))! ⇡K Parse ⇡I := (SI ,⇤I) and similarly ⇡J . Also, let
K = I [ J , and assume for simplicity that I \ J = ; (if this is not the case, one could simply
disaggregate ⇡I (or ⇡J ) to ⇡I\J (or ⇡J\I )).

First, compute SK  ShamirTrick(SI , SJ , eI , eJ). Next, compute �j  S
eJ\{j}
K = S

1/ej
I

for every j 2 J , and similarly  i  S
eI\{i}
K = S1/ei

J for every i 2 I . Then compute

⇢I  
⇤IQ

j2J �
vj
j

and �J  
⇤JQ
i2I  

vi
i

Return ⇡K := (SK ,⇤K) where ⇤K  ShamirTrick(⇢I ,�J , eI , eJ).

Aggregation Correctness. It follows from the correctness of Shamir’s trick and by construction.
In Aggregation and disaggregation SK’s correctness is straightforward, so we emphasize on
⇤K . For the disaggregation algorithm:

⇤K := ⇤
eI\K
I ·

Y

j2I\K

�
vj
j =

0

@
nY

j=1,j /2I

S
vj
j

1

A

1
eI

eI\K

·
Y

j2I\K

⇣
S1/eK
j

⌘vj

=

0

@
nY

j=1,j /2I

S
vj
j

1

A

1
eK

·

0

@
Y

j2I\K

S
vj
j

1

A
1/eK

=

0

@
nY

j=1,j /2K

S
vj
j

1

A
1/eK

which is a valid opening for theK-subvector. And for the aggregation algorithm:

⇢I :=
⇤IQ

j2J �
vj
j

=

0

@
nY

j=1,j /2I[J

S
vj
j

1

A
1/eI

and �J :=
⇤JQ

j2I  
vj
j

=

0

@
nY

j=1,j /2J[I

S
vj
j

1

A
1/eJ

so

⇤K := ShamirTrick(⇢I ,�J , eI , eJ)

= ShamirTrick

0

B@

0

@
nY

j=1,j /2I[J

S
vj
j

1

A
1/eI

,

0

@
nY

j=1,j /2J[I

S
vj
j

1

A
1/eJ

, eI , eJ

1

CA

=

0

@
nY

j=1,j /2I[J

S
vj
j

1

A

1
eIeJ

=

0

@
nY

j=1,j /2I[J

S
vj
j

1

A

1
eI[J

which is a valid opening for the (I [ J)-subvector.

Ef�ciency. We summarize the ef�ciency of this construction in terms of both the computational
cost of each algorithm and the communication. For the analysis we consider an instantiation of
PrimeGenwith a deterministic function that maps every integers in [n] into an `-bit prime number.
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Also, we observe that the algorithms described above may have different implementations: while
straightforward instantiations may lead to a complexity quadratic in the (sub)vector’s length, in
what follows we discuss more ef�cient ways that keeps the complexity quasilinear. For this, we
often rely on theMultiExp algorithm described in [40]. On input an integer n, and two vectors
↵ 2 Gn and x 2 Zn,MultiExp(n,↵,x) is a divide-and-conquer algorithm that computesQn

i=1 ↵
x⇤/xi
i where x⇤ =

Qn
i=1 xi, and it does it in time O(n log n), instead of a naive O(n2).

Setup. Setup generates a group description and samples one random group element, while
Specialize computes one exponentiation with an (` · n)-bits integer. Both the universal and the
specialized CRS consist each of 1 element of G.

Committing. Committing to a vector v 2 ({0, 1}`)n can be done in time O(` n log n) by
using theMultiExp algorithm from [40], i.e., C  MultiExp(n,↵, e) where ↵i = gvi and
ei = PrimeGen(i). The commitment is a single element of G.

Opening. An opening for a set I of m positions consists of two group elements, and it can
be computed as follows. First, compute SI through the exponentiation ge[n]\I which requires
O(`(n � m)) group operations, and then compute ⇤I in a way similar to committing, i.e.,
⇤I  MultiExp(n0,↵,x), where n0 = n �m, ↵ = (gvj )j2[n]\I , x = (ej)j2[n]\I , which
takes time O(`(n�m) log(n�m)).

Veri�cation. Verifying an opening for I of sizem requires two exponentiations with an (`m)-bits
long integer (SeI

I and ⇤eI
I ), and the computation of

Q
i2I S

yi
i can be done in time O(`m logm)

by runningMultiExp(m,↵,x) with ↵ = (Sy1
I , . . . , Sym

I ) and x = (ei)i2I .

Aggregation andDisaggregation. Disaggregation can be computed in timeO(`(|I|�|K|) log(|I|�
|K|)) in a way similar to veri�cation: two exponentiations with an `(|I| � |K|)-bits long in-
teger each, and an invocation ofMultiExp((|I| � |K|),↵,x), with ↵ = (S

vj
I )j2I\K and

x = (ej)j2I\K , to compute
Q

j2I\K S
eI\(K[{j})·vj
I .

Aggregation can be computed in time O(`m logm) where m = max(|I|, |J |) as fol-
lows. Two invocations of ShamirTrick, each requiring two exponentiations with (`m)-
bits long integers, to compute SK and ⇤K , and two invocations ofMultiExp to computeQ

j2J �
vj
j and

Q
i2I  

vi
i respectively. From this, we obtain that VC.AggManyToOne and

VC.DisaggOneToMany take time O(`m log2m) G and O(`m logm log(m/B)) G, respec-
tively.

Commitment and Opening with Precomputation. Finally, let us summarize the costs of commit-
ting and opening with preprocessing obtained by instantiating our method of Section 6.4.2. The
preprocessing VC.PPCom, with parameter B, requires O(`n log n log(n/B)) operations of G
and produces a storage advice of 2n/B group elements. The opening requires computing at
most |S|  m disaggregation, each taking time O(`(|Pj |� |Ij |) log((|Pj |� |Ij |))), for a total
of O(`(|S|B� |I|) log(|S|)), followed by the aggregation step that counts O(`|S| log2 |S|). So,
in the worst case VC.FastOpen takes O(` ·m · (log2(m) +B � 1)) operations of G.

Security. For the security of the above SVC scheme we observe that the difference with the
corresponding [145] lies in the generation of Si’s. In [145] they are generated in the trusted
setup phase, thus they are considered “well-formed” in the security proof. In our case, the Si’s
are reconstructed during veri�cation time from the SI that comes in the opening ⇡I which can
(possibly) be generated in an adversarial way. However, in the veri�cation it is checked that
SeI
I = U , where U = ge[n] is computed in the trusted setup. So under the Low Order assumption
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we get that SI has the correct form, SI = ge[n]/eI = ge[n]\I , with overwhelming probability.
Except for this change, the rest reduces to the position binding of the [145] SVC.

Theorem 22 (Position-Binding). Let Ggen be the generator of hidden order groups where the
Low Order assumption holds and the [145] SVC is position binding. Then the SVC scheme
de�ned above is position binding.

Proof. We start by de�ning the game G0 as the actual position binding game of De�nition 12,
and our goal is to prove that for any PPT A, Pr[G0 = 1] 2 negl(�):

Game G0:
G0 = PosBindAVC(�)

pp Setup(1�,M)

(C, I,y,⇡,y0,⇡0) A(pp)

b Ver(pp, C, I,y,⇡) = 1 ^ y 6= y0 ^ Ver(pp, C, I,y0,⇡0) = 1

return b
More speci�cally pp := (G, g,PrimeGen), ⇡ := (SI ,⇤I), ⇡0 := (S0

I ,⇤
0
I) and

b = SeI
I = Un ^ C = ⇤eI

I

Y

i2I
Syi
i ^ y = y0 ^ S0eI

I = Un ^ C = ⇤0eI
I

Y

i2I
S
0y0i
i

where Si = S
eI\{i}
I and S0

i = S
0eI\{i}
I for each i 2 I .

Now let G1 be the same as above except for the outputted by the adversary SI and S0
I it

holds that SI = ge[n]\I = S0
I . The S

eI
I = Un = S0eI

I checks are not done in the veri�cation (as
they are redundant):

Game G1:
G1

pp Setup(1�,M)

(C, I,y, (SI ,⇤I),y
0, (S0

I ,⇤
0
I)) A(pp)

if SI 6= ge[n]\I or S0
I 6= ge[n]\I then abort

b C = ⇤eI
I

Y

i2I

�
S
eI\{i}
I

�yi ^ y = y0 ^ C = ⇤0eI
I

Y

i2I

⇣
S
0eI\{i}
I

⌘y0
i

return b

Then Pr[G0 = 1]  Pr[G1 = 1]+negl(�). InG0, SeI
I = Un = ge[n] . Assume that SI 6= ge[n]\I

then ge[n]\I = S⇤
I , hence S

eI
I = S⇤eI

I )
�
S�1
I S⇤

I

�eI = 1. Since S⇤
I is ef�ciently computable

and eI < 2poly(�) this constitutes a solution to the Low Order problem for the hidden order
group. The previous happens only with negligible probability under the Low Order assumption.
The same holds for S0

I . Notice that it follows that Si = S0
i = ge[n]\{i} .

Let G2 be the same as above except the adversary receives ei  PrimeGen(i) and Si =
ge[n]\{i} for each i 2 [n], together with the parameters:

Game G2:
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G2

(G, g,PrimeGen) Setup(1�,M)

ei  PrimeGen(i);Si = g
Q

i2[n]\{i} ei for each i 2 [n]

(C, I,y,⇤I ,y
0,⇤0

I) A
�
G, g,PrimeGen, {Si}i2[n]

�

b C = ⇤eI
I

Y

i2I

Syi
i ^ y = y0 ^ C = ⇤0eI

I

Y

i2I

S
y0
i

i

return b

It is straightforward that Pr[G1 = 1] = Pr[G2 = 1] and furthermore G2 is identical to the
position binding game of the [145] SVC scheme and according to the hypothesis Pr[G2 = 1] =
negl(�).

As showed in [145], their SVC is position binding under the strong Distinct-Prime-Product
Root assumption in the standard model. We conclude that the above SVC is position binding
in hidden order groups where the Low Order and the Strong Distinct-Prime-Product Root
assumptions hold.

6.5.3 Comparison with Related Work

We compare our two SVC schemes with the recent scheme proposed by Boneh et al. [40] and
the one by Lai and Malavolta [145], which extends [66] to support subvector openings.43 We
present a detailed comparison in Table 6.1, considering to work with vectors of length N of
`-bit elements and security parameter �. In particular we consider an instantiation of our �rst
SVC with k = 1 (and thus n = N · `).

Setup Model. [40] works with a fully universal CRS, whereas our schemes have both a universal
CRS with deterministic specialization, which however, in comparison to [66, 145], outputs
constant-size parameters instead of linear.

Aggregation. The VC of [40] supports aggregation only on openings created by Open (i.e., it
is one-hop) and does not have disaggregatable proofs (unless in a different model where one
works linearly in the length of the vector or knows the full vector). In contrast, we show the
�rst schemes that satisfy incremental aggregation (also, our second one immediately yields a
method for the incremental aggregation of [145]). As we mention later, incremental aggregation
can be very useful to precompute openings for a certain number of vector blocks allowing for
interesting time-space tradeoffs that can speedup the running time of Open.

Ef�ciency. From the table, one can see that our �rst SVC has: slightly worse commitments size
than all the other schemes, computational asymptotic performances similar to [40], and opening
size slightly better than [40]. Our second SVC is the most ef�cient among the schemes with
constant-size parameters; in particular, it has faster asymptotics than our �rst SVC and [40]
for having a smaller logarithmic factor (e.g., log(N �m) vs. log(`N)), which is due to the
avoidance of using one prime per bit of the vector. In some cases, [66, 145] is slightly better,
but this is essentially a bene�t of the linear-size parameters, namely the improvement is due to
having the Si’s elements already precomputed.

43We refer to [40] to see how these schemes compare with Merkle trees.
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When considering applications in which a user creates the commitment to a vector and
(at some later points in time) is requested to produce openings for various subvectors, our
incremental aggregation property leads to use preprocessing to achieve more favorable time
and memory costs. In a nutshell, The idea of preprocessing is that one can precompute and
store information that allows to speedup the generation of openings, in particular by making
opening time less dependent on the total length of the vector. Our method in Section 6.4.2
works generically for any SVC that has incremental aggregation. A similar preprocessing
solution can also be designed for the SVC of [40] by using its one-hop aggregation; we provide
a detailed description of the method in Appendix 6.10. The preprocessing for [40] however has
no �exibility in choosing how much auxiliary storage can be used, and one must store (a portion
of) a non-membership witness for every bit of the vector.
Even in the simplest case of B = 1 (shown in Table 6.1) both our SVCs save a factor ` in

storage, which concretely turns into 3⇥ less storage.
Furthermore we support �exible choices of B thus allowing to tune the amount of auxiliary

storage. For instance, we can choose B =
p
N so as to get 2

p
N |G| bits of storage, and

opening time about O(`m log n(
p
n+ logm)) andO(m(

p
n+ log2m)) in the �rst and second

scheme respectively. Our �exibility may also allow one to choose the buckets size B and their
distribution according to applications-dependent heuristics; investigating its bene�t may be an
interesting direction for future work.

Metric Our First SVC [40] [66, 145]
Setup

Setup O(1) O(1) O(1)
|pp| 3 |G| 1 |G| 1 |G|

Specialize O(` ·N · log(`N)) G — O(` ·N · logN) G
|ppN | 1 |G| — N |G|

Commit a vector v 2 ({0, 1}`)N
Com O(` ·N · log(`N)) G O(` ·N · log(`N)) G O(` ·N) G
|C| 4 |G|+ 2 |Z2k | 1 |G| 1 |G|

Opening and Veri�cation for vI with |I| = m
Open O(` · (N �m) · log(`N)) G O(` · (N �m) · log(`N)) G O(` · (N �m) ·m logm) G
|⇡I | 4 |G| 5 |G|+ 1 |Z2k | 1 |G|
Ver O(m · ` · log(`N)) Z2k +O(�) G O(m · ` · log(`N)) Z2k +O(�) G O(` ·m) G

Commitment and Opening with Precomputation
Com O(` ·N · log(` ·N) · log(N)) G O(` ·N · log(` ·N) · log(N)) G O(` ·N2)
|aux| O(N) |G| O(N) |G|+O(` ·N)|Z2k | O(N) |G|
Open O(m · ` · log(m) log(`N)) G O(m · ` · log(m) log(`N)) G O(m · ` · log(m)) G

Aggregation Incremental One-hop Incremental
Disaggregation Yes No Yes

Table 6.1: Comparison between the SVC’s of [40], [145] and this work (including our incremental
aggregation for [145]); our contributions highlighted in gray. We consider committing to a vector
v 2 ({0, 1}`)N of length N , and opening and verifying for a set I ofm positions. By ‘O(x) G’
we mean O(x) group operations in G; |G| denotes the bit length of an element of G. An
alternative algorithm for Open in [145] costs O(` · (N �m) · log(N �m)).

6.6 Arguments of Knowledge for Our First SVC

We propose three Arguments of Knowledge (AoK) related to our vector commitment scheme
presented in section 6.5.1. More speci�cally, the �rst AoK allows one to prove knowledge of
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Setup(1�) : run G $Ggen(1�), g $G, set crs⇤ := (G, g).
Prover’s input: (crs⇤, (A,B,C,�,�), (a, b)). Veri�er’s input: (crs⇤, (A,B,C,�,�)).

V! P: h $G
P! V: z := (za, zb) computed as za  ha, zb  hb

V! P: ` $P(1, 2�) and ↵ $ [0, 2�)

P! V: ⇡ := ((QA, QB, QC), ra, rb) computed as follows

• (qa, qb, qab) (ba/`c, bb/`c, bab/`c)
• (ra, rb) (a mod `, b mod `)

• (QA, QB, QC) := (�qah↵qa ,�qbh↵qb , gqab)

V(crs, (A,B,C), za, zb, `,↵,⇡):

• Compute rc  ra · rb mod `

• Output 1 iff ra, rb 2 [`] ^ Q`
A�

rah↵ra = Az↵a ^ Q`
B�

rbh↵rb = Bz↵b ^ Q`
Cg

rc = C

Figure 6.4: PoProd⇤ protocol

an opening of a subvector. The second AoK, is a direct outcome of the �rst and allows one to
prove that two given commitments share a common subvector. Finally, the third protocol allows
one to commit to a pre�x-subvector of a vector and prove the knowledge of it succinctly.
Similarly to section 6.5.1.1, our protocols build on the techniques for succinct proofs in

groups of unknown order from [40]. Furthermore, these arguments of knowledge are not zero
knowledge and they serve ef�ciency purposes. Interestingly, one can prove knowledge of a
portion of a vector committed without having to send the actual vector values. The proofs are
constant-size which leads to an improvement of communication complexity linear in the size of
the opening.

6.6.1 Building block: A Stronger Proof of Product

Before proceeding to describing the main protocols, we introduce another one that is used as
building block. This is an argument of knowledge, called PoProd⇤, for the relation RPoProd⇤

described below, which uses a common reference string consisting of a hidden order group
G Ggen(1�) and a random generator g 2 G:

RPoProd⇤ =
�
((A,B,C,�,�), (a, b)) 2 G5 ⇥ Z2 : A = �a ^B = �b ^ C = ga·b

 

The relation RPoProd⇤ is similar to RPoProd de�ned in Section 6.5.1.1 with the difference
that now the �rst two bases � and � are not part of the common reference string, but part of the
statement instead. As argued in [40] the PoKE protocol is not secure anymore for adversarially
chosen bases, therefore we cannot use PoProd protocol which assumes knowledge extractability
of PoKE. To deal with this problem, we thus modify the protocol by using the protocol PoKE2,
which is secure for arbitrary bases. This comes with some cost: in our PoProd⇤ a proof consists
of 5 group elements and 2 �eld elements, that is 2 group elements more comparing to proofs of
PoProd. The protocol is in Figure 6.4.
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Theorem 23. The PoProd⇤ protocol in Fig. 6.4 is an argument of knowledge for RPoProd⇤ in
the generic group model.

The proof of the theorem above is similar to the proof of Theorem 20, except that we use
the extractor EPoKE2 of the protocol PoKE2 from [40] in order to extract integers a and b and
EPoKE in order to extract the exponent of C.

6.6.2 A Succinct AoK of Opening for our VC Construction

We show an argument of knowledge of an I-opening with respect to a commitment C to a vector,
where I is a set of positions. We emphasize that the goal of this protocol is not to keep the
opening secret (i.e., the protocol is not zero knowledge, also our vector commitment scheme
is not hiding). The goal is to reduce the communication complexity of an opening by proving
knowledge of the subvector at positions I without having to actually send the values vI . Even
though the argument of knowledge itself adds an overhead it is independent of the number of
the positions. Hence, the protocol makes more sense for large sets of positions I as for a small
number of positions the overhead of the AoK would exceed the size of the opening values.

Let VC = (Setup, Specialize,Com,Open,Ver) be our SVC scheme from Section 6.5.1, and
let us de�ne the following relation

RPoKOpen = {( (c, I), (y,⇡I) ) : Ver(pp, c, I,y,⇡I) = 1}

that is parametrized by a CRS pp  Setup(1�,M), and where the statement consists of a
commitment c and a set of indices I ✓ [n], and the witness consists of a vector y 2M|I| and
an opening ⇡I .
For simplicity we present a protocol PoKOpen for the case when k = 1 in our VC (see

section 6.5.1); extension to larger k is immediate. The idea of our protocol is that, given a
commitment C := ((A,B),⇡prod) and a set of indices I , the prover, holding ⇡I := (�I ,�I),
�rst sends ⇡I to the veri�er and then provides an AoK of (aI , bI) such that �aI

I = A ^�bI
I =

B ^ gaI ·bI = UI , where UI  guI with uI  PrimeProd(I). This can be proven by using the
PoProd⇤ protocol presented above. Finally the veri�er should also verify the ⇡prod proof as in
the normal veri�cation of an opening algorithm.

We state the following theorem.

Theorem 24. If PoProd⇤ is a succinct argument of knowledge for RPoProd⇤ , then protocol
PoKOpen is a succinct argument of knowledge for relation RPoKOpen with respect to algorithm
Ver of our construction of Section 6.5.1.

Proof. Let A be an adversary of the Knowledge Extractability of PoKOpen such that: ((C, I),
state)  A0(pp), A1(pp, (C, I), state) executes with V(pp, (C, I)) the protocol PoKOpen
and the veri�er accepts with a non-negligible probability ✏. We will construct an extractor E
that having access to the internal state of A1 and on input (pp, (C, I), state), outputs a witness
(y,⇡I) of RPoKOpen with overwhelming probability and runs in (expected) polynomial time.

To prove knowledge extractability of PoKOpen we rely on the knowledge extractability of
PoProd⇤. More precisely, given a PoKOpen execution between A and V , (�I ,�I ,⇡PoProd0),
E constructs an adversary A0 = (A0

0,A0
1) of PoProd

⇤ Knowledge Extractability and, by using
the input and internal state of A1, simulates an execution between A0 and V: A0

0 outputs
(((G, g), (A,B,UI ,�I ,�I)), state), A0

1 outputs tuple
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PoKOpen protocol

Prover’s input: (pp, (c, I), (y,⇡I). Veri�er’s input: (pp, (c, I)).

V Compute uI  PrimeProd(I) and then UI  guI .

Similarly compute un  PrimeProd([n]) and then Un  gun

P: Parse pp := (G, g, g0, g1,PrimeGen, Un), c := ({A,B},⇡prod), ⇡I := (�I ,�I). Compute
(aI , bI) PartndPrimeProd(I,y) and then uI  PrimeProd(I) and UI  guI .

P! V: (�I ,�I)

Finally a PoProd⇤ protocol (with an additional check of the commitment) between
P((G, g), (A,B,UI ,�I ,�I), (aI , bI)) and V((G, g), (A,B,UI ,�I ,�I)) is executed:

V! P: h $G
P! V: z := (za, zb) computed as za  haI , zb  hbI

V! P: ` $P(1, 2�) and ↵ $ [0, 2�)

P! V: ⇡ := ((QA, QB, QC), ra, rb) computed as follows

• (qa, qb, qab) (baI/`c, bbI/`c, baIbI/`c)
• (ra, rb) (aI mod `, bI mod `)

• (QA, QB, QC) :=
�
�qa
I h↵qa ,�qb

I h↵qb , gqab
�

V: Parse pp := (G, g, g0, g1,PrimeGen, Un) and C := ({A,B},⇡prod).

• Compute rc  ra · rb mod `

• Output 1 iff ra, rb 2 [`] ^ Q`
A�

ra
I h↵ra = Az↵a ^ Q`

B�
rb
I h↵rb = Bz↵b ^ Q`

Cg
rc =

UI ^ PoProd2.V(pp, (A ·B,Un),⇡prod)

Figure 6.5: PoKOpen protocol

(za, zb, (QA, QB, QC), ra, rb). It is obvious that if the initial execution is accepted by V so is
the PoProd⇤ execution. From Knowledge Extractability of PoProd we know that there exists
an extractor E 0 corresponding toA0

1 that outputs (aI , bI) such that A = �aI
I ^B = �bI

I ^UI =
gaI ·bI . Since UI is also computed from V it holds that UI = guI , unless with a negligible
probability that A0 can �nd an x 6= uI such that gx = UI = guI (which implies �nding a
multiple of the order of G). Therefore guI = UI = gaI ·bI and using the same argument we
know that uI = aI · bI (unless with negligible probability).

So, E uses E 0 and gets a (aI , bI) such thatA = �aI
I ^B = �bI

I ^UI = gaI ·bI . Then computes
uI  PrimeProd(I) and works as follows: for each i 2 I computes pi  PrimeGen(i)
and if pi | aI then sets yi = 0, otherwise if pi | aI then sets yi = 1. It is clear that pi
divides exactly one of aI , bI since aI · bI = uI =

Q
i2I pi :=

Q
i2I PrimeGen(i) (unless with

a negligible probability that a collision happened in PrimeGen). Finally sets the subvector
y = (yi)i2I and ⇡I = (�I ,�I). As stated above �aI

I = A ^ �bI
I = B and also since V

veri�es the PoKOpen protocol it holds that PoProd2.V(pp, (A · B,Un),⇡prod) which means
that Ver(pp, c, I,y,⇡I) = 1.
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As one can see, the expected running time of E is the (expected) time to obtain a successful
execution of the protocol plus the running time to obtain y plus the running time of E 0. To obtain
y it will need to make |I| divisibility checks which takes time Õ(|I|) plus |I| calls of PrimeGen,
which takes poly(�) time. So overall the expected time is 1

✏ + tE 0 + Õ(|I|) + poly(�) =
poly(�).

Non-interactive PoKOpen. A non-interactive version of the protocol PoKOpen after applying
the generalized Fiat-Shamir transform [26] is shortly presented below:

PoKOpen.P(pp, (c, I), (y,⇡I))! ⇡: Parse pp := (G, g, g0, g1,PrimeGen, Un), c := ({A,B},
⇡prod), ⇡I := (�I ,�I). Compute (aI , bI)  PartndPrimeProd(I,y) and then uI  
PrimeProd(I) andUI  guI . Finally compute a proof ⇡PoProd⇤  PoProd⇤.P((G, g), (A,B,
UI , �I ,�I), (aI , bI)).

Return ⇡  (�I ,�I ,⇡PoProd⇤)

PoKOpen.V(pp, (c, I),⇡PoProd⇤)! b: Parse pp := (G, g, g0, g1,PrimeGen, Un),C := ({A,B},
⇡prod) and ⇡ := (�I ,�I ,⇡PoProd⇤). Compute uI  PrimeProd(I) and then UI  guI .

Return 1 if both PoProd2.V(pp, (A ·B,Un),⇡prod) and
PoProd⇤.V((G, g), (A,B,�I ,�I , UI),⇡PoProd⇤) output 1, and 0 otherwise.

Remark 18 (Achieving sub-linear veri�cation time). For ease of exposition we presented
the case of k = 1 in the above. For the case of arbitrary k one should prove knowledge of
(aIj , bIj) such that

Vk
j=1 �

aIj
Ij = Aj

Vk
j=1�

bIj
Ij = B ^ gaIj ·bIj = UI , where UI  guI and

uI  PrimeProd(I). Using the same technique as above the size of the AoK is O(k) (as is
the commitment and the opening proof). However, since the UI is the same for each j, the
veri�cation is done in O(|I|/k + � · k) time. Interestingly, if k =

p
|I| the veri�cation time

gets O(
p

|I|), which is sublinear in the size of the opening. Essentially, in cases where the
opening queries are (approximately) �xed, one can trade a larger commitment size O(

p
|I|) in

order to achieve an argument of knowledge of subvectors that has sublinear size and sublinear
veri�cation time O(

p
|I|).

Applications to Compact Proofs of Storage. We observe that the protocol PoKOpen for our
VC immediately implies a keyless proof of storage, or more precisely a proof of retrievable
commitment (PoRC) [105] with non-black-box extraction. In a nutshell, a PoRC is a proof of
retrievability [135] of a committed �le. In [105] Fisch de�nes PoRC and proposes a construction
based on vector commitments – called VC-PoRC – which abstracts away a classical proof of
retrievability based on Merkle trees. A bit more in detail, in the VC-PoRC scheme the prover
uses a VC to commit to a �le (seen as a vector of blocks); then at every audit the veri�er chooses
a challenge by picking a set of �pos randomly chosen positions I = {i $ [n]}, and the prover
responds by sending the subvector vI and an opening ⇡I . Here �pos is a statistical parameter
that governs the probability of catching an adversary that deletes (or corrupts) a fraction of the
�le. For example, if the �le is �rst encoded using an erasure code with constant rate µ (i.e., one
where a µ-fraction of blocks suf�ces to decode and such that the encoded �le has size roughly
µ�1 · |F |), then an erasing adversary has probability at most µ�pos of passing an audit.
Our PoRC scheme is obtained by modifying the VC-PoRC of [105] in such a way that the

VC opening is replaced by a PoKOpen AoK. This change saves the cost of sending the �pos
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vector values, which gives us proofs of �xed size, 7 elements of G and 2 values of Z22� . As
drawback, our scheme is not black-box extractable; strictly speaking, this means it is not a PoR
in the sense of [135] since the extractor does not exist in the real world.44
We note that another solution with �xed-size proofs can be achieved by using a SNARK

to prove knowledge of the VC openings so that the VC-PoRC veri�er would accept. For the
Merkle tree VC, this means proving knowledge of �pos Merkle tree openings, which amounts
to proving correctness of about �pos log n hash computations. On a �le of 220 bits with 128
spot-checks, this solution would reduce proof size from 80KB to less than 1KB. But its concrete
proving costs are high (more than 20 minutes and hundreds of GB of RAM).
In contrast we can estimate our AoK to be generated in less than 20 seconds and of size

roughly 2KB.
Since our PoRC scheme is a straightforward modi�cation of Fisch’s VC-PoRC construction,

a complete description is omitted. We stress that our technical contribution here is the design of
the AoK.
Finally, we note that we can apply the observation of the previous remark in order to also

achieve veri�cation time sub-linear in the size |I| of the challenged subvector at the expense of
slightly larger commitments (of size

p
|I|).

6.6.3 An AoK for commitments with common subvector

We note that a simple AND composition of two PoKOpen arguments of knowledge on two
different vector commitments can serve as a protocol proving knowledge of a common subvector
of the two vectors committed. More speci�cally given two vector commitments, C1, C2 on
two different vector v1,v2 respectively, one can prove knowledge of a common subvector vI
with a succinct (constant sized) argument without having to send the actual subvector. The two
commitments should share the same CRS pp Setup(1�,M) though they can have distinct
specialized CRSs ppn1

and ppn2
respectively (i.e., v1 and v2 may have different length). The

underlying relation is:

RPoKComSub = {( (C1, C2, I), (vI ,⇡I,1,⇡I,2) ) : Ver
?(ppn1

, C1, I,vI ,⇡I,1) = 1

^ Ver?(ppn2
, C2, I,vI ,⇡I,2) = 1}

As mentioned above, it is straightforward to show that an AND composition of PoKOpen on
different vector commitments C1 and C2 is a protocol for the above relation. That is the prover,
holding ⇡I,1 := (�I,1,�I,1) and ⇡I,2 := (�I,2,�I,2), �rst sends ⇡I,1,⇡I,2 to the veri�er and
then provides an argument of knowledge of (aI , bI) such that �aI

I,1 = A1^�bI
I,1 = B1^gaI ·bI =

UI ^ �aI
I,2 = A2 ^�bI

I,2 = B2, where UI  guI and uI  PrimeProd(I).

6.6.4 A Succinct AoK for Commitment on Subvector

Herewe present a protocol which succinctly proves that a commitmentC 0 opens to an I-subvector
vI of the opening v of another commitment C. Since C 0 is a vector commitment vI should be
a normal vector instead of a general subvector, i.e. I should be a set of consecutive positions
starting from 1, I = {1, . . . , n0} for some n0 2 N. We note though that both commitments
should share the same pp (but not the same specialized CRS). Below is the relation of the

44The notion of PoR with non-black-box extractability is close to that of robust proof of data possession [10, 9].
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AoK that is parametrized by the two specialized CRSs ppn  Specialize(pp, n) and ppn0  
Specialize(pp, n0) where pp Setup(1�,M) is common.

RPoKSubV = {( (C,C 0, I), (vI ,⇡I ,⇡
0
I) ) : Ver

?(ppn, C, I,vI ,⇡I) = 1

^ Ver?(ppn0 , C 0, I,vI ,⇡
0
I) = 1 ^ |vI | = n0}

The idea of our protocol is that since the opening vI is the I-subvector of v one can provide
a succinct proof of knowledge of the opening at these positions using the PoKOpen protocol
presented above. However this is not enough as one should bind the opening proof with C 0.
This concretely can happen if one embeds a proof of product for the two components, A0

and B0, of C 0 inside the proof of opening. More speci�cally the prover provides an opening
proof ⇡I := (�I ,�I) then computes (aI , bI)  PartndPrimeProd(I,vI) and proves that
gaI0 = A0 ^ gbI1 = B0 ^Un0 = gaI ·bI ^�aI

I = A^�bI
I = B. Notice that the last three equalities

correspond to the proof of opening protocol and the �rst three to the proof of product. So a
conjunction of PoKOpen and PoProd protocol is suf�cient. Lastly g, g0, g1 and Un0 are part of
ppn0 and (A,B), (A0, B0) part of the C and C 0 commitments respectively.

Prover input: ((ppn, ppn0), (C,C 0, I), (vI ,⇡I). Veri�er input: ((ppn, ppn0), (C,C 0, I)).

P! V: ⇡I := (�I ,�I)

A conjuction of PoProd⇤ and PoKOpen protocols between P(ppn, ppn0 , (C,C 0, I), (vI ,⇡I))
and V(ppn, ppn0 , (C,C 0, I)) is executed:

V! P: h $G
P! V: z := (za, zb) computed as za  haI , zb  hbI

V! P: ` $P(1, 2�) and ↵ $ [0, 2�)

P! V: ⇡ := ((QA, QB, Q0
A, Q

0
B, QC), ra, rb) computed as follows

• (qa, qb, qab) (baI/`c, bbI/`c, baIbI/`c)
• (ra, rb) (aI mod `, bI mod `)

• (QA0 , QB0 , QA, QB, QC) :=
�
gqa0 , gqb1 ,�qa

I h↵qa ,�qb
I h↵qb , gqab

�

V: Parse ppn := (G, g, g0, g1,PrimeGen, Un), ppn0 := (G, g, g0, g1,PrimeGen, Un0) and
C := ({A,B},⇡prod).

• Compute rc  ra · rb mod `

• Output 1 iff ra, rb 2 [`] ^ Q`
A0g

ra
0 = A0 ^ Q`

B0g
rb
1 = B0 ^ Q`

A�
ra
I h↵ra = Az↵a ^

Q`
B�

rb
I h↵rb = Bz↵b ^ Q`

Cg
rc = Un0 ^ PoProd2.V(pp, (A ·B,Un),⇡prod)

Figure 6.6: PoKSubV protocol

We state the following theorem for the security of the protocol above.

Theorem 25. If PoProd⇤ and PoKOpen are succinct arguments of knowledge forRPoProd⇤ and
RPoKOpen, then protocol PoKSubV in Fig. 6.6 is a succinct argument of knowledge for relation
RPoKSubV with respect to algorithm Ver of our construction of Section 6.5.1.
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All Participating Nodes

Storage Nodes
Store current digest. Store a portion of the �le.
Can retrieve blocks of the �le and verify responses. Can answer and certify retrievals of subportions.
Can aggregate proofs they received. Can produce and publish updates to their view.
Can update the digest following updates from other nodes Can apply updates from other nodes ef�ciently.

Table 6.2: Roles in a decentralized veri�able database.

The intuition of the proof is that one proves knowledge of an opening I for C, namely that
vI is an I-subvector of C, where (aI , bI) PartndPrimeProd(I,vI), with a normal proof of
subvector opening. This is equivalent to Ver?(ppn, C, I,vI ,⇡I) = 1. Then in the same proof
proves that the accumulators of C 0 are composed by the same (aI , bI) which results to proving
that C 0 commits to vI . The last point is equivalent to Ver?(ppn0 , C 0, I,vI ,⇡0I) = 1 ^ |vI | = n0.

6.7 Veri�able Decentralized Storage

In this section we introduce veri�able decentralized storage (VDS). We recall that in VDS there
are two types of parties (called nodes): the generic client nodes and the more specialized storage
nodes (a storage node can also act as a client node). The main goal of client nodes is to retrieve
some blocks (i.e., a portion) of a given �le. The role of a storage node is instead to store a portion
of a �le (or more �les) and to answer to the retrieval queries of clients that are relevant to the
portion it stores. In terms of security, VDS guarantees that malicious storage nodes cannot send
to the clients blocks of the �le that have been tampered with.
In Table 6.2 we summarize the main roles/capabilities of VDS nodes.

6.7.1 Syntax

Here we introduce the syntax of VDS. A VDS scheme is de�ned by a collection of algorithms that
are to be executed by either storage nodes or client nodes. The only exception is the Bootstrap
algorithm that is used to bootstrap the entire system and is assumed to be executed by a trusted
party, or to be implemented in a distributed fashion (which is easy if it is public coin).
The syntax of VDS re�ects its goal: guaranteeing data integrity in a highly dynamic and

decentralized setting (the �le can change and expend/shrink often and no single node stores it all).
In VDS we create both parameters and an initial commitment for an empty �le at the beginning
(through the probabilistic Bootstrap algorithm, which requires a trusted execution). From then
on this commitment is changed through incremental updates (of arbitrary size). Updating is
divided in two parts. A node can carry out an update it and “push” it to all the other nodes,
i.e. providing auxiliary information (that we call “update hint”) other nodes can use to update
their local certi�cates (if affected by the change) and a new digest45. These operations are
done respectively trough StrgNode.PushUpdate and StrgNode.ApplyUpdate. Opening and
verifying are where VC (with incremental aggregation) and VDS share the same mechanism.
To respond to a query, a storage node can produce (possibly partial) proofs of opening via the

45One can also see this update hint as a certi�cate to check that a new digest is consistent with some changes. This
issue does not arise in our context at all but the Bootstrap algorithms are deterministic.
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StrgNode.Retrieve algorithm.. If these proofs need to be aggregated, any node can use algorithm
AggregateCertificates. Anyone can verify a proof through ClntNode.VerRetrieve.
In VDS we model the �les to be stored as vectors in some message spaceM (e.g.,M =

{0, 1} or {0, 1}`), i.e., F = (F1, . . . ,FN ). Given a �le F, we de�ne a portion of it as a pair
(I,FI) where FI is essentially the I-subvector of F.

De�nition 30 (Veri�able Decentralized Storage). Algorithm to bootstrap the system:

Bootstrap(1�)! (pp, �0, st0) Given the security parameter �, the probabilistic bootstrap
algorithm outputs public parameters pp, initial digest �0 and state st0. �0 and st0 correspond
to the digest and storage node’s local state respectively for an empty �le.

All the algorithms below implicitly take as input the public parameters pp.

The algorithms for storage nodes are:

StrgNode.AddStorage(�, n, st, I,FI , Q,FQ,⇡Q)! (st0, J,FJ) This algorithm allows a stor-
age node to add more blocks of a given �le F to its local storage. Its �rst inputs are the local
view of the storage node that is de�ned by a digest �, a length n, a state st, and a �le portion
(I, FI). Then it takes as input a �le subportion (Q, FQ) together with a valid retrieval certi�cate
⇡Q. The output is an updated view of the storage node, that is a new state st0 and �le portion
(J,FJ) := (I,FI) [ (Q,FQ).

Note that this algorithm can be used to enable anyone who holds a valid retrieval certi�cate
for a �le portion FQ to become a storage node of such portion.

StrgNode.RmvStorage(�, n, st, I,FI ,K)! (st0, J,FJ) This algorithm allows a storage node
to remove blocks of a given �le F from its local storage. Its �rst inputs are the local view of the
storage node that is de�ned by a digest �, a length n, a state st, and a �le portion (I, FI). Then
it takes as input a set of positions K ✓ I , and the output is an updated view of the storage
node, that is a new state st0 and �le portion (J,FJ) := (I,FI) \ (K, ·).

StrgNode.CreateFrom(�, n, st, I,FI , J)! (�0, n0, st0, J,FJ ,⌥J) This algorithm allows a stor-
age node for a �le subportion FI to create a new �le containing only a subset FJ of FI along
with the corresponding digest �0 and length n0 and a hint to help other nodes generate their
own digest. The algorithm takes as input the local view of the storage node, i.e., digest �, length
n, local state st and �le portion (I,FI), and a set of indices J ✓ I . The algorithm returns a
new digest �0, length n0, a local state st0, a �le portion (J,FJ) and an advice ⌥. This advice
can be used by a client holding only the former digest � to obtain the new digest �0, by using
the ClntNode.GetCreate algorithm described below.

StrgNode.PushUpdate(�, n, st, I,FI , op,�)! (�0, n0, st0, J,F0J ,⌥�) This algorithm allow a
storage node of a �le subportion FI to perform an update on the �le and to generate a
corresponding digest, length and local view, along with a hint other nodes can use to accordingly
update their digests and local views. The inputs include the local view of the storage node,
i.e., digest �, length n, local state st and �le portion (I,FI), an update operation op 2
{mod, add, del} and an update description �. The outputs are a new digest �0 and length n0,
a new local state st0, an updated �le portion (J,F0J) and an update hint ⌥�. If op = mod,
then � contains a �le portion (K, F0K) such thatK ✓ I and F0K represents the new content to
be written in positionsK. If op = add, it is also � = (K,F0K) except thatK is a set of new
(sequential) positionsK \ I = ; that start from n+ 1 (and end to n+ |K|). If op = del, then
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� only contains a set of positionsK ✓ I , which are the ones to be deleted (and are ought to be
the |K| last sequential positions). The proof⌥� can be used by client nodes holding � in order
to check the validity of the new digest �0, and by other storage nodes, holding additionally
the length n, in order to check the validity of the changes and to update their local views
accordingly.

StrgNode.ApplyUpdate(�, n, st, I,FI , op,�,⌥�)! (b, �0, n0, st0, J,F0J) This algorithm allows
a storage node to incorporate changes in a �le pushed by another node. The inputs include the
local view of the storage node, i.e., digest �, length n, local state st and �le portion (I, FI), an
update operation op 2 {mod, add, del}, an update description� and an update hint ⌥�. The
algorithm returns a bit b (to accept/reject the update) and (if b = 1) a new digest �0, a new
length n0, a new (local) state st0 and an updated �le subportion (J,F0J). If op 2 {mod, add}
we have that J = I , i.e., the node keeps storing the same indices; if op = del then J is I minus
the deleted indices.

StrgNode.Retrieve(�, n, st, I,FI , Q)! (FQ,⇡Q) This algorithm allows a storage node to an-
swer a retrieval query for blocks with indices in Q and to create a certi�cate vouching for the
correctness of the returned blocks. The inputs include the local view of the storage node, i.e.,
digest �, length n local state st and �le portion (I,FI), and a set of indices Q. The output is a
�le portion FQ and a retrieval certi�cate ⇡Q.
The algorithms for clients nodes are:
ClntNode.GetCreate(�, J,⌥J)! (b, �0) On input a digest �, a set of indices J and a creation
advice ⌥J , this algorithm returns a bit b (to accept/reject) and (if b = 1) a new digest �0 that
corresponds to a �le F0 that is the pre�x with indices J of the �le represented by digest �.

ClntNode.ApplyUpdate(�, op,�,⌥�)! (b, �0) On input a digest �, an update operation
op 2 {mod, add, del}, an update description � and an update hint ⌥�, it returns a bit b (to
accept/reject update) and (if b = 1) a new digest �0.

ClntNode.VerRetrieve(�, Q,FQ,⇡Q)! b On input a digest �, a �le portion (Q,FQ) and a
certi�cate ⇡Q, this algorithm accepts (i.e. it outputs 1) only if ⇡Q is a valid proof that �
corresponds to a �le F with length n of which FQ is the portion corresponding to indices Q.

AggregateCertificates(�, (I,FI ,⇡I), (J,FJ ,⇡J))! ⇡K On input a digest � and two certi�-
cated retrieval outputs (I,FI ,⇡I) and (J,FJ ,⇡J), this algorithm aggregates their certi�cates
into a single certi�cate ⇡K (withK := I [ J). In a running VDS system, this algorithm can
be used by any node to aggregate two (or more) incoming certi�ed data blocks into a single
certi�ed data block.
Remark 19 (On CreateFrom). For completeness, our VDS syntax also includes the functionalitis
(StrgNode.CreateFrom,ClntNode.GetCreate) that allow a storage node to initialize storage
(and corresponding digest) for a new �le that is a subset of an existing one, and a client node
to verify such resulting digest. Although this feature can be interesting in some application
scenarios (see the Introduction), we still see it as an extra feature that may or may not be satis�ed
by a VDS construction.

6.7.2 Correctness and Ef�ciency of VDS

Intuitively, we say that a VDS scheme is ef�cient if running VDS has a “small” overhead in terms
of the storage required by all the nodes and the bandwidth to transmit certi�cates. More formally,
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a VDS scheme is said ef�cient if there is a �xed polynomial p(·) such that p(�, log n) (with �
the security parameter and n the length of the �le) is a bound for all certi�cates and advices
generated by the VDS algorithms as well as for digests � and the local state st of storage nodes.
Note that combining this bound with the requirement that all algorithms are polynomial time in
their input, we also get that no VDS algorithm can run linearly in the size of the �le (except in
the trivial case that the �le is processed in one shot, e.g., in the �rst StrgNode.AddStorage).
Ef�ciency essentially models that running VDS is cost-effective for all the nodes in the

sense that it does not require them to store signi�cantly more data then they would have to store
without. Notice that by requiring certi�cates to have a �xed size implies that they do not grow
with aggregation.

For correctness, intuitively speaking, we want that for any (valid) evolution of the system in
which the VDS algorithms are honestly executed we get that any storage node storing a portion
of a �le F can successfully convince a client holding a digest of F about retrieval of any portion
of F. And such (intuitive notion of) correctness is also preserved when updates, aggregations, or
creations of new �les are done.
Turning this intuition into a formal correctness de�nition turned out to be nontrivial. This

is due to the distributed nature of this primitive and the fact that there could be many possible
ways in which, at the time of answering a retrieval query, a storage node may have reached
its state starting from the empty node state. The basic idea of our de�nition is that an empty
node is “valid”, and then any “valid” storage node that runs StrgNode.PushUpdate “transfers”
such validity to both itself and to other nodes that apply such update. A bit more precisely, we
model “validity” as the ability to correctly certify retrievals of any subsets of the stored portion.
A formal de�nition correctness follows. To begin with, we de�ne the notion of validity for the
view of a storage node.

De�nition 31 (Validity of storage node’s view). Let pp be public parameters as generated by
Bootstrap. We say that a local view (�, n, st, I,FI) of a storage node is valid if 8Q ✓ I:

ClntNode.VerRetrieve(�, Q,FQ,⇡Q) = 1

where (FQ,⇡Q) StrgNode.Retrieve(�, n, st, I,FI , Q)

Remark 20. ByDe�nition 31 the output of a bootstrapping algorithm (pp, �0, st0) Bootstrap(
1�) is always such that (pp, �0, 0, st0, ;, ;) is valid. This provides a “base case” for De�nition
33.

Second, we de�ne the notion of admissible update, which intuitively models when a given
update can be meaningfully processed, locally, by a storage node.

De�nition 32 (Admissible Update). An update (op,�) is admissible for (n, I,FI) if:

• for op = mod,K ✓ I and |F0K | = |K|, where� := (K,F0K).

• for op = add, K \ I = ; and |F0K | = |K| and K = {n + 1, n + 2, . . . , n + |K|}, where
� := (K,F0K).

• for op = del,K ✓ I andK = {n� |K|+ 1, . . . , n}, where� := K.

In words, the above de�nition formalizes that: to push a modi�cation at positions K, the
storage node must store those positions; to push an addition, the new positionsK must extend
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the currently stored length of the �le; to push a deletion of positionK, the storage node must
store data of the positions to be deleted and those positions must also be the last |K| positions of
the currently stored �le (i.e., the �le length is reduced).

De�nition 33 (Correctness of VDS). A VDS scheme VDS is correct if for all honestly generated
parameters (pp, �0, st0)  Bootstrap(1�) and any storage node’s local view (�, n, st, I,FI)
that is valid, the following conditions hold.
Update Correctness. For any update (op,�) that is admissible for (n, I,FI) and for any (�0,
n0, st0, J,F0J ,⌥�) StrgNode.PushUpdate(�, n, st, I,FI , op,�):

1. (pp, �0, n0, st0, J,F0J) is valid;

2. for any valid (�, n, sts, Is,FIs), if (bs, �0s, n0, st0s, I
0
s,F

0
s) StrgNode.ApplyUpdate(�, n, sts,

Is,FIs , op,�,⌥�) then we have: bs = 1, �0s = �0, n0
s = n0, and (�0s, n0

s, st
0
s, I

0
s,F

0
s) is valid;

3. if (bc, �0c) ClntNode.ApplyUpdate(�, op,�,⌥�), then �0c = �0 and bc = 1.

Add-Storage Correctness. For any (Q,FQ,⇡Q) such that
ClntNode.VerRetrieve(�, Q,FQ,⇡Q) = 1, if (st0, J,FJ)  StrgNode.AddStorage(�, st, I, F,
Q, FQ, ⇡Q) then (�, n, st0, J,FJ) is valid.
Remove-Storage Correctness. For anyK ✓ I ,
if (st0, J,FJ) StrgNode.RmvStorage(�, st, I,F,K) then (�, n, st0, J,FJ) is valid.
Create Correctness. For any J ✓ I , if (�0, n0, st0, J,FJ ,⌥J) is output of
StrgNode.CreateFrom(�, n, st, I,FI , J) and (b, �00)  ClntNode.GetCreate(�, J,⌥J), then
b = 1, n0 = |J |, �00 = �0 and (pp, �0, n0, st0, J,FJ) is valid.
Aggregate Correctness. For any pair of triples (I,FI ,⇡I) and (J,FJ ,⇡J) such that
ClntNode.VerRetrieve(�, I,FI ,⇡I) = 1 and ClntNode.VerRetrieve(�, J,FJ ,⇡J) = 1,
if ⇡K  AggregateCertificates((I,FI ,⇡I), (J,FJ ,⇡J)) and (K,FK) := (I,FI) [ (J,FJ),
then
ClntNode.VerRetrieve(�,K,FK ,⇡K) = 1.

Remark 21 (Relation with Updatable VCs). Our notion of VDS is very close to the notion of
updatable VCs [66] extended to support subvector openings and incremental aggregation. On
a syntactical level, in comparison to updatable VCs, our VDS notion makes more evident the
decentralized nature of the primitive, which is re�ected in the de�nition of our algorithms where
for example it is clear that no one ever needs to store/know the entire �le. One major difference
is that in VDS the public parameters must necessarily be short since no node can run linearly in
the size of the �le (nor it can afford such storage), whereas in VCs this may not be necessarily
the case. Another difference is that in updatable VCs [66] updates can be received without any
hint, which is instead the case in VDS. Finally, it is interesting to note that, as of today, there
exists no VC scheme that is updatable, incrementally aggregatable and with subvector openings,
that enjoys short parameters and has the required short veri�cation time. So, in a way, our
two VDS realizations show how to bypass this barrier of updatable VC by moving to a slightly
different (and practically motivated) model.

6.7.3 Security of VDS

In this section we de�ne the security of VDS schemes. Intuitively speaking, we require that a
malicious storage node (or a coalition of them) cannot convince a client of a false data block
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in a retrieval query. To formalize this, we let the adversary fully choose a history of the VDS
system that starts from the empty state and consists of a sequence of steps, where each step is
either an update (addition, deletion, modi�cation) or a creation (from an existing �le) and is
accompanied by an advice. A client’s digest � is updated following such history and using the
adversarial advices, and similarly one gets a �le F corresponding to such digest. At this point,
the adversary’s goal is to provide a tuple (Q,⇡Q,F⇤Q) that is accepted by a client with digest �
but where F⇤Q 6= FQ.

De�nition 34 (History for Decentralized Storage). LetVDS be a veri�able decentralized storage
scheme. A history for VDS is a sequenceH = (opi,�i,⌥i

�)i2[`] of tuples, where op
i is either

in {mod, add, del} (i.e., it is an update of the �le), or opi = cfrom (i.e., it is the creation of a
new �le related to the current one), in which case�i is a set of indices. In order to de�ne valid
histories we de�ne the function EvalHistory(pp, �0, st0,H) as follows
EvalHistory(pp, �0, st0,H)

F0  ;; b 1

for i 2 [`]

Fi  FileChange(Fi�1, op
i,�i)

if opi 2 {mod, add, del} then

(bi, �i) ClntNode.ApplyUpdate(

�i�1, op
i,�i,⌥i

�)

elseif opi = cfrom then

(bi, �i) ClntNode.GetCreate(

�i�1,�
i,⌥i

�)

endif

b b ^ bi

endfor

return (b, �`,F`)

FileChange(F, op,�)

if op 2 {mod, add} parse� = (K,F0
K)

8i 2 K : F⇤
i  F0

i; 8i 2 [|F|] \K : F⇤
i  Fi,

elseif op = del parse� = K

8i 2 [|F|] \K : F⇤
i  Fi,

elseif op = cfrom parse� = K

8i 2 K : F⇤
i  Fi,

endif return F⇤

We say that a historyH is valid w.r.t. public parameters pp and initial digest �0 and state
st0 if EvalHistory(pp, �0, st0,H) returns bit b = 1.

De�nition 35 (Security for Veri�able Decentralized Storage). Consider the experiment
VDS-SecurityAVDS(�) below. Then we say that a VDS scheme VDS is secure if for all PPT A we
have Pr[VDS-SecurityAVDS(�) = 1] 2 negl(�).

VDS-SecurityAVDS(�)

(pp, �0, st0) Bootstrap(1�)

(H, Q,F⇤
Q,⇡

⇤) A(pp, �0, st0)

(b, �,F) EvalHistory(pp, �0, st0,H)

b b ^ F⇤
Q 6= FQ^

ClntNode.VerRetrieve(pp, �, Q,F⇤
Q,⇡

⇤)

return b
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6.8 Our Realizations of VDS in Hidden-Order Groups

In this section, we present two constructions of VDS that work in hidden-order groups. The two
schemes are presented in Sections 6.8.1 and 6.8.2 respectively, and we discuss a comparison in
Section 6.8.3.

6.8.1 Our First VDS Construction

We build our �rst scheme by extending the techniques used to construct our �rst SVC scheme
from Section 6.5.1. In particular, we start from a modi�ed version of our SVC that achieves a
weaker position binding property (in which the adversary reveals the full vector, yet its goal is
to �nd two distinct openings for the same position) and then show how to make this scheme
dynamic (i.e., to change vector values or its length) and fully distributed (i.e., updates can be
performed without knowing the entire vector).

Preliminaries. We begin by describing the simpli�ed version of our SVC, considering the
case of k = 1, which �ts best our VDS construction, regarding ef�ciency and communication
complexity. For convenience of the reader we describe again shortly the algorithms and functions
(and variations of them) from section 6.5.1 that are used in the scheme (for more details we
refer to the corresponding section):

• PrimeGen, a deterministic collision resistant function that maps integers to primes.

• PartndPrimeProd(I,y) ! (aI , bI): given a set of indices I = {i1, . . . , im} ✓ [n] and a
vector y 2Mm, the function computes (aI , bI) :=

⇣Qm
l=1:yl=0 pil ,

Qm
l=1:yl=1 pil

⌘
, where

pi  PrimeGen(i) for all i 2 N.

Setup(1�, {0, 1}k)! pp := (G, g, g0, g1,PrimeGen).

Com0(pp,v)! C compute (a, b) PartndPrimeProd([n],v), where n |v|; next compute
A = ga0 and B = gb1. Return C := (C?, n) := ((A,B), |v|).

Ver0(pp, C, I,y,⇡I)! b compute (aI , bI) PartndPrimeProd(I,y), and then parse ⇡I :=
(�I ,�I) and return b (�aI

I = A) ^ (�bI
I = B).

VC.Disagg0(pp, I,vI ,⇡I ,K)! ⇡K let L := I \ K, and vL be the subvector of vI at posi-
tions in L. Then compute aL, bL  PartndPrimeProd(L,vL) parse ⇡I := (�I ,�I) and set
(�K ,�K) (�aL

I ,�bL
I ). Return ⇡K  (�K ,�K).

VC.Agg0(pp, (I,vI ,⇡I), (J,vJ ,⇡J))! ⇡K :

1. Let L := I \ J . If L 6= ;, set I 0 := I \ L and compute ⇡I0  VC.Disagg(pp, I,vI ,⇡I , I 0);
otherwise let ⇡I0 = ⇡I .

2. Compute (aI0 , bI0) PartndPrimeProd(I,vI0) and {aJ , bJ} PartndPrimeProd(J,vJ).
3. Parse⇡I0 := (�I0 ,�I0), ⇡J := (�J ,�J) and compute�K  ShamirTrick(�I0 ,�J , aI0 , aJ)
and �K  ShamirTrick(�I0 ,�J , bI0 , bJ)

4. Return ⇡K  (�K ,�K)

Finally, let PoKSubV0 be the same protocol as in section 6.6 but adjusted according to the above
algorithms. That is the CRS of is simply pp instead of the two specialized CRSs. Furthermore,
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since C is not accompanied with PoProd2 the veri�er does not have to check the validity of it.
The rest of the protocol remains the same and the underlying relation is:

RPoKSubV0 = {( (C,C 0, I), (vI ,⇡I ,⇡
0
I) ) : Ver

0(pp, C, I,vI ,⇡I) = 1

^ Ver0(pp, C 0, I,vI ,⇡
0
I) = 1 ^ |vI | = n0}

Finally, we note that for simplicity in the followingwe abuse the notation for Shamir’s trick by
writing e.g. (�0

I ,�
0
I) 

�
ShamirTrick(�I ,�K , FI , FK)a

0
K , ShamirTrick(�I ,�K , FI , FK)b

0
K
�

instead of writing, more precisely,

(�0
I ,�

0
I) 

�
ShamirTrick(�I ,�K , aI , aK)a

0
K , ShamirTrick(�I ,�K , bI , bK)b

0
K
�
.

Our scheme VDS1. The algorithms of the VDS scheme VDS1 are the following:46

Bootstrap(1�)! (pp, �0, n0, st0) Execute Setup(1�, {0, 1}k) and get pp := (G, g, g0, g1,PrimeGen).
Set n0  0, �0  ((g0, g1), n0) and st0  (g0, g1).

The algorithms for storage nodes are:

StrgNode.AddStorage(�, n, st, I,FI , Q,FQ,⇡Q)! (st0, J,FJ) If I = ; then set st0  ⇡Q,
otherwise st := ⇡I . Then compute st0  VC.Agg0(pp, (I,FI ,⇡I), (Q,FQ,⇡Q)). The compu-
tation of J and FJ is straightforward: (J,FJ) (I [Q,FI [ FQ).

StrgNode.RmvStorage(�, n, st, I,FI ,K)! (st0, J,FJ) Compute J  I \ K and the corre-
sponding FJ . Then ⇡J  VC.Disagg0(pp, I,FI ,⇡I , J) and set st0  ⇡J .

StrgNode.CreateFrom(�, n, st, I,FI , J)! (�0, n0, st0, J,FJ ,⌥J) The new digest �0 of FJ is
computed with the commitment algorithm �0  Com0(pp,FJ). The new length gets n0  |J |.
The previous local state is st = ⇡I and the new local state gets st0  VC.Disagg(pp, I, FI ,⇡I , J).
Finally, for⌥J it computes an argument of knowledge of subvector (see section 6.6), ⇡PoKSubV0  
PoKSubV0.P(pp, (�, �0, J), (vJ ,⇡I)) and sets ⌥J  (�0,⇡PoKSubV0).

StrgNode.PushUpdate(�, n, st, I,FI , op,�)! (�0, n0, st0, J,F0J ,⌥�) The algorithmworks ac-
cording to the type of update operation op:

• op = mod: parse� := (K, F0K) and st := ⇡I . Execute ⇡K  VC.Disagg0(pp, I, FI ,⇡I ,K)
and parse ⇡K := (�K ,�K). Then compute (a0K , b0K) PartndPrimeProd(K, F0K) and set
�0  ((�

a0K
K ,�

b0K
K ), n) (i.e., n0 = n remains the same). st0 is the new opening of I , ⇡0I  ⇡I ,

which is the same so the local state does not change st0  st. Since it is a modi�cation
operation (J,F0J)  (I,F0I), where F

0
I is simply the modi�ed �le F

0
I = (FI \ FK) [ F0K .

Finally, set ⌥�  (FK ,⇡K).
• op = add: parse � := (K,F0K), st := ⇡I , and the old digest � := ((A,B), n). Then com-
pute (a0K , b0K) PartndPrimeProd(K, F0K) and the new digest gets �0  ((Aa0K , Bb0K ), n0)
where n0  n+ |K|. The new state refers to the new �le subportion (J, F0J) (I [K, FI [
FK), st0 := ⇡0J , and is the same as the old one st

0  st since ⇡I = ⇡0J . Finally, set⌥�  ?.
46Since the scheme has several parts in common with the above VC algorithms, we use those algorithms as

shorthands in the description.
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• op = del: parse � := K and st := ⇡I . Execute ⇡K VC.Disagg0(pp, I,FI ,⇡I ,K) and
parse ⇡K := (�K ,�K). Then the new digest is �0  ((�K ,�K), n0) where n0  n� |K|.
The new state refers to the new �le subportion (J, F0J) (I \K, FI \ FK)) and is the same
as the old one st0  st since ⇡I = ⇡0J . Finally set ⌥�  (FK ,⇡K).

StrgNode.ApplyUpdate(�, n, st, I,FI , op,�,⌥�)! (b, �0, n0, st0, J,F0J) Again, it works ac-
cording to the type of update operation op:

• op = mod: parse � := (K,F0K), st := ⇡I and ⌥� := (FK ,⇡K). Compute acceptance bit
b Ver0(pp, �,K,FK ,⇡K). Then, if b = 1 parse ⇡K := (�K ,�K), compute (a0K , b0K) 
PartndPrimeProd(K,F0K) and set �0  ((�

a0K
K ,�

b0K
K ), n0) where n0  n. It is clear that

in the case of a modify operation (J,F0J)  (I,F0I), where F
0
I is simply the modi�ed �le

F0I = (FI \ FK) [ F0K . For the new local state st
0 that we discern three cases:

– I \K = ;: then compute
(�0

I ,�
0
I) 

⇣
ShamirTrick(�I ,�K ,FI ,FK)a

0
K , ShamirTrick(�I ,�K ,FI ,FK)b

0
K

⌘

and set st0  ⇡0I := (�0
I ,�

0
I).

– I \K = K: compute (�0
I ,�

0
I) (�I ,�I) and set st0  ⇡0I := (�0

I ,�
0
I).

– For the case where neither I \K = ; nor I \K = K, i.e. I \K = L /2 {K, ;} we parti-
tionK asK = L[ L̄ and apply two sequential updates to ⇡I , one with L0 (s.t. I \ L̄ = ;)
and one with L (s.t. I \ L = L). That is, compute (a0

L̄
, b0

L̄
) PartndPrimeProd(L̄,F0

L̄
)

and then
(�0

I ,�
0
I)  

⇣
ShamirTrick(�I ,�L̄,FI ,FL̄)

a0
L̄ , ShamirTrick(�I ,�L̄,FI ,FL̄)

b0
L̄

⌘
.

Then (�00
I ,�

00
I )  (�0

I ,�
0
I). Finally, set st

0  (�00
I ,�

00
I ). Essentially, since the case

of I \L = L doesn’t cause any change to the state, computationally it is as a single update.
• op = add: parse � := (K,F0K), st := ⇡I and the old digest as � := ((A,B), n). Set b = 1
iffK = {n+1, . . . , n+|K|}. Then if b = 1 compute (a0K , b0K) PartndPrimeProd(K, F0K)
and the new digest becomes �0  ((Aa0K , Bb0K ), n0) where n0  n+ |K|. For the new local
state, �rst parse the old one st := ⇡I := (�I ,�I) and the new one gets st0  ⇡0I where
⇡0I  (�

a0K
I ,�

b0K
I ). Finally set (J,F0J) (I,FI), i.e., the �le remains unchanged.

• op = del: parse � := K, st := ⇡I , and ⌥� := (FK ,⇡K). Set b = 1 iff K = {n � |K| +
1, . . . , n} ^ Ver0(pp, �,K,FK ,⇡K) = 1. Then if b = 1 sets �0  ((�K ,�K), n0) where
n0  n� |K|. For the new local state, similarly to the modify operation, we discern three
cases. If I \K = ; then
(�0

I ,�
0
I) (ShamirTrick(�I ,�K ,FI ,FK) , ShamirTrick(�I ,�K ,FI ,FK)) and set

st0  ⇡K := (�0
I ,�

0
I); else if I \K = K st0 = st, else if I \K = L then (let L̄ = K \L)

(�0
I ,�

0
I)  (ShamirTrick(�I ,�L̄,FI ,FL̄) , ShamirTrick(�I ,�L̄,FI ,FL̄)) and set

st0  ⇡I := (�0
I ,�

0
I) (similarly to the op = mod case). Finally (J, F0J) (I \L, FI \ FL).

StrgNode.Retrieve(�, n, st, I,FI , Q)! (FQ,⇡Q) Compute both portion FQ ✓ FI as well as
proof
⇡Q  VC.Disagg0(pp, I,FI , st, Q).

The algorithms for client nodes are:

ClntNode.GetCreate(�, J,⌥J)! (b, �0) Parse ⌥J := (�0,⇡PoKSubV0), set n0 = |J | and output
b PoKSubV0.V(pp, (�, �0, J),⇡J) ^ J = {1, . . . , |J |} and �0.
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ClntNode.VerRetrieve(�, Q,FQ,⇡Q)! b Output b Ver0(pp, �, Q,FQ,⇡Q)

ClntNode.ApplyUpdate(�, op,�,⌥�)! (b, �0) This algorithm is almost identical to the �rst
part of the Storage Node algorithm StrgNode.ApplyUpdate(�, n, st, I,FI , op,�,⌥�). The
difference is that it executes only the parts that are related to the output of b and �.

AggregateCertificates(�, (I,FI ,⇡I), (J,FJ ,⇡J))! ⇡K
Return ⇡K  VC.Agg0(pp, (I,FI ,⇡I), (J,FJ ,⇡J)).

Correctness. Here we state and prove the correctness of VDS1.

Theorem 26. The scheme VDS1 presented above is a correct veri�able decentralized storage
scheme.

Proof. In the following we will always assume that st := (st1, st2) and � := (�?, n) :=
((�1, �2), n). Furthermore, whenever (aI , bI) appear, we assume that they are the outputs of
PartndPrimeProd(I,FI), for each set of indices I . Finally for each set of indices I we assume
⇡I := (�I ,�I).

First we note that in our construction it is suf�cient for a local view (pp, �, n, st, I,FI) of a
storage node to be valid that
ClntNode.VerRetrieve(�, I, StrgNode.Retrieve(�, n, st, I,FI , I)) = 1 holds. More concretely
this translates to staI1 = �1 ^ stbI2 = �2 and due to the correctness of disaggregation property
st

0aQ
1 = �1 ^ st

0bQ
2 = �2 holds where st0  StrgNode.Retrieve(�, n, st, I,FI , Q) for each

Q ✓ I . To put things clear, a local view of a storage node (pp, �, n, st, I,FI) is valid if
staI1 = �1 ^ stbI2 = �2.
Let (pp, �, n, st, I,FI) be a valid local view of a storage node:

Update Correctness. Let (op,�) be an admissible update for (I, FI , n) and (�0, n0, st0, J,F0J ,⌥�)
be the output of StrgNode.PushUpdate(�, n, st, I, FI , op,�). We discern three cases depending
on the type of update:

• op = mod:

1. According to our construction �?0 = (�
a0K
K ,�

b0K
K ), where

(�K ,�K) = (�
aI\K
I ,�

bI\K
I ) = (st

aI
aK
1 , st

bI
bK
2 ) (due toVC.Disagg0). So �0 = (st

aI
aK

a0K
1 , st

bI
bK

b0K
2 ).

Furthermore st0 = st and J = I , so

(st
0a0J
1 , st

0b0J
1 ) = (st

aI
aK

a0K
1 , st

bI
bK

b0K
2 ) = (�01, �

0
2)

2. Let (�, n, sts, Is,FIs) be valid and (bs, �0s, n0
s, st

0
s, Js,F

0
Js) be the output of

StrgNode.ApplyUpdate(�, n, st, I,FI , op,�,⌥�). bs = 1, �0s = �0 and n0
s = n0 come

from inspection.
If I \K = ; then
(st0s,1, st

0
s,2) 

⇣
ShamirTrick(sts,1,�K ,FI ,FK)a

0
K , ShamirTrick(sts,2,�K ,FI ,FK)b

0
K

⌘
=

= (st
a0K
aK
s,1 , st

b0K
bK
s,2 ) and (a0I , b

0
I) = (aI , bI) remains the same. So

(st
0a0I
s,1 , st

0b0I
s,2) = (st

a0K
aK

aI

s,1 , st
b0K
bK

bI

s,2 ) = (�s,1, �s,2)
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If I \K = K then sts doesn’t change and (a0I , b
0
I) = ( aI

aK
a0K , bI

bK
b0K), hence

(st
0a0I
s,1 , st

0b0I
s,2) = (�0s,1, �

0
s,2)

The validity of (pp, �0s, n0
s, st

0
s, Js,F

0
Js) in the case of I \K = L /2 {;,K} is covered by

the above two, since it essentially is a sequence of the two above cases.
3. Let (bc, �c) be the output of ClntNode.ApplyUpdate(�, op,�,⌥�). It follows directly from
the de�nition of ClntNode.ApplyUpdate (and its similarity with StrgNode.ApplyUpdate)
that bc = bs = 1 and �0c = �0s = �0.

• op = add:

1. According to our construction �?0 = (�
a0K
1 , �

b0K
2 ) and st0 = st. Also, J = I [ K and

(a0J , b
0
J) = (aIa0K , bIb0K) and so

(st
0a0J
1 , st

0b0J
1 ) = (st

aIa0K
1 , st

bIb0K
2 ) = (�

a0K
1 , �

b0K
2 ) = (�01, �

0
2)

2. Let (�, n, sts, Is,FIs) be valid and (bs, �0s, n0
s, st

0
s, Js,F

0
Js) be the output of

StrgNode.ApplyUpdate(�, n, st, I,FI , op,�,⌥�). bs = 1, �0s = �0 and n0
s = n0 come

from inspection. Also J = I so (a0J , b
0
J) = (aI , bI). st0 = (st

a0K
1 , st

b0K
2 ) and �?0 =

(�
a0K
1 , �

b0K
2 ) so

(st
0a0J
1 , st

0b0J
1 ) = (st

a0KaI
1 , st

b0KbI
2 ) = (�01, �

0
1)

3. Let (bc, �c) be the output of ClntNode.ApplyUpdate(�, op,�,⌥�). Again correctness
comes directly from the de�nition of ClntNode.ApplyUpdate.

• op = del:

1. According to our construction (�01, �02) = (�K ,�K) = (�
1

aK
1 , �

1
bK
2 ), st0 = st and J = I \K.

Furthermore, (a0J , b
0
J) = ( aI

aK
, bI
bK

)

(st
0a0J
1 , st

0b0J
1 ) = (st

aI
aK
1 , st

bI
bK
2 ) = (�

1
aK
1 , �

1
bK
2 ) = (�01, �

0
2)

2. Let (�, n, sts, Is,FIs) be valid and (bs, �0s, n0
s, st

0
s, Js,F

0
Js) be the output of

StrgNode.ApplyUpdate(�, n, st, I,FI , op,�,⌥�). bs = 1, �0s = �0 and n0
s = n0 come

from inspection. Also let L = I \K then J = I \ L and if L̄ = K \ L then

(st01, st
0
2) (ShamirTrick(st1,�L̄,FI ,FL̄) , ShamirTrick(st2,�L̄,FI ,FL̄)) = (st

1
aL̄
1 , st

1
bL̄
2 )

(st
0a0J
1 , st

0b0J
1 ) = (st

aJ
aL̄
1 , st

bJ
bL̄
2 ) = (st

aI/aL
aK/aL
1 , st

bI/bL
bK/bL
1 ) = (�

1
aK
1 , �

1
bK
2 ) = (�01, �

0
2)

3. Let (bc, �c) be the output of ClntNode.ApplyUpdate(�, op,�,⌥�). bc = bs = 1 and
�0c = �0s = �0 from inspection.
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Add Storage Correctness. It comes directly from aggregation correctness of VC.Agg0 (see
section 6.5.1.2).
Remove Storage Correctness. It comes directly from disaggregation correctness ofVC.Disagg0

(see section 6.5.1.2).
Create Correctness. Let J ✓ I and (�0, n0, st0, J,FJ ,⌥J) be the output of
StrgNode.CreateFrom(�, n, st, I, FI , J) and (b, �00) the output ofClntNode.GetCreate(�, J,⌥J),
then n0 = |J | comes from inspection of StrgNode.CreateFrom, �00 = �0 comes from in-
spection of ClntNode.GetCreate algorithm and validity of (pp, �0, n0, st0, J,FJ) comes from
correctness of Com0 and VC.Agg. Finally, b = 1 comes from correctness of PoKSubV0

protocol.
Aggregate Correctness. It comes directly from aggregation correctness ofVC.Agg0 (see section
6.5.1.2).

Security. Below we state and prove the security of our VDS1 scheme.

Theorem 27 (Security). Let G  Ggen(1�) be a hidden order group where the strong RSA
assumption holds, then the scheme VDS1 presented above is a secure Veri�able Decentralized
Storage scheme in the generic group model.

Proof. First we observe that in our scheme, for every valid historyH, with Bootstrap(1�)!
(pp, �0, st0) := ((G, g, g0, g1,PrimeGen) , ((g0, g1), 0) , (g0, g1)), the digest that arises is the
same as a commitment of the �le withCom0. Concretely, let (b, �,F) EvalHistory(pp, �0, st0,H)
then if b = 1 it holds that � = Com0(pp,F) or �? = (�1, �2) = (ga0 , g

b
1), where (a, b)  

PartndPrimeProd([|F|],F). Particularly this is central to our construction and one can validate
that it holds by inspecting all the algorithms that alter the digest.
To prove the theorem we use a hybrid argument. We start by de�ning the game G0 as

the actual V DS security game of De�nition 35, and our goal is to prove that for any PPT A,
Pr[G0 = 1] 2 negl(�).

Game G0:
G0 = VDS-SecurityAVDS(�)

(pp, �0, st0) Bootstrap(1�)

(H, Q,F⇤
Q,⇡

⇤) A(pp, �0, st0)

(b, �,F) EvalHistory(pp, �0, st0,H)

b b ^ F⇤
Q 6= FQ^

ClntNode.VerRetrieve(pp, �, Q,F⇤
Q,⇡

⇤)

return b

EvalHistory(pp, �0, st0,H)

F0  ;; b 1

for i 2 [`]

Fi  FileChange(Fi�1, op
i,�i)

if opi 2 {mod, add, del} then

(bi, �i) ClntNode.ApplyUpdate(�i�1, op
i,�i,⌥i

�)

elseif opi = cfrom then

(bi, �i) ClntNode.GetCreate(�i�1,�
i,⌥i

�)

endif

b b ^ bi

endfor

return (b, �`,F`)

Recall thatH = (opi,�i,⌥i
�)i2[`] where:
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• for opi = mod: �i := (Ki,FiKi), ⌥i
� := (Fi�1

Ki ,⇡
i�1
Ki ) and ClntNode.ApplyUpdate(�i�1,

opi,�i,⌥i
�) outputs b

i = 1 if Ver0(pp, �i�1,Ki,Fi�1
Ki ,⇡

i�1
Ki ) = 1 or (�aKi

Ki = �i�1
1 ) ^

(�
bKi

Ki = �i�1
2 ).

• for opi = add: �i := (K,FiKi), ⌥i
� := ? and ClntNode.ApplyUpdate(�i�1, opi,�i,⌥i

�)
outputs bi = 1 ifKi = {ni�1 + 1, . . . , ni�1 + |Ki|}.

• opi = del: �i := Ki, ⌥i
� := (Fi�1

Ki ,⇡
i�1
Ki ) and ClntNode.ApplyUpdate(�i�1, opi,�i,⌥i

�)

outputs bi = 1 if (Ki = {ni�1 � |Ki| + 1, . . . , ni�1}) ^ Ver0(pp, �i�1,Ki�1,Fi�1
Ki ,⇡

i�1
Ki ))

or (Ki = {ni�1 � |Ki|+ 1, . . . , ni�1} ^ (�
aKi

Ki = �i�1
1 ) ^ (�

bKi

Ki = �i�1
2 ).

• opi = cfrom: �i := Ki, ⌥i
� := (�i,⇡iPoKSubV0) and ClntNode.GetCreate(�i�1,�i,⌥i

�)
outputs bi = 1 if PoKSubV0.V(pp, (�i�1, �i, |Ki|,Ki),⇡iKi) = 1.

Game Gi: de�ne Gi be the same as Gi�1 except for the update i:

• if opi = mod: �i := (Ki,FiKi), ⌥i
� := (Fi�1

Ki ,⇡
i�1
Ki ) but in the i-th step of EvalHistory bi is

instead output of:
bi  (aKi |a) ^ (bKi |b)

where (a, b) PartndPrimeProd([|Fi�1|],Fi�1)

In case bi = 0 aborts (aborti). Otherwise �i is computed normally from
ClntNode.ApplyUpdate(�i�1, opi,�i,⌥i

�).

• for opi = add: �i := (K, FiKi), ⌥i
� := ? and everything is the same as in Gi�1. I.e. (bi, �i)

is the output of ClntNode.ApplyUpdate(�i�1, opi,�i,⌥i
�).

• opi = del: �i := Ki, ⌥i
� := (Fi�1

Ki ,⇡
i�1
Ki ). Similarly to the mod case bi is the output of:

bi  (aKi |a) ^ (bKi |b) ^ (Ki = {ni�1 � |Ki|+ 1, . . . , ni�1})

where (a, b) PartndPrimeProd([|Fi�1|],Fi�1)

In case bi = 0 aborts (aborti). Otherwise �i is computed normally from
ClntNode.ApplyUpdate(�i�1, opi,�i,⌥i

�).

• opi = cfrom: �i := Ki, ⌥i
� := (�i,⇡iPoKSubV0) but in the i-th step of EvalHistory bi is

instead:
bi  (Fi�1

Ki ✓ Fi�1) ^ �i = Com0(pp,Fi�1
Ki ) ^ J = {1, . . . , |J |}

In case bi = 0 aborts (aborti).

Lemma 15. Let opi = mod then if the strong RSA assumption holds for Ggen, Pr[Gi�1 = 1] 
Pr[Gi = 1] + negl(�).

Proof. It is straightforward that the only difference between Gi�1 and Gi is in the computa-
tion of bi inside the EvalHistory. That is in Gi�1 : bi = (�

aKi

Ki = �i�1
1 ) ^ (�

bKi

Ki = �i�1
2 )

and in Gi : bi = (aKi |a) ^ (bKi |b). Since abort1, abort2, . . . , aborti�2 have not happen,
from correctness of the V DS scheme it comes that (�i�1

1 , �i�1
2 ) = (ga0 , g

b
1), where (a, b)  

PartndPrimeProd([|Fi�1|],Fi�1).
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|Pr[Gi�1 = 1]� Pr[Gi = 1]| = Pr[aborti] = Pr[bi = 0] = Pr[(aKi |a) ^ (bKi |b)]. But
since aborti�1 didn’t happen (�

aKi

Ki = ga0 ) ^ (�
bKi

Ki = gb1). Therefore it is straightforward to
aborti to the strong RSA assumption, i.e. Pr[aborti] = negl(�).

Lemma 16. Let opi = del then if the strong RSA assumption holds for Ggen, Pr[Gi�1 = 1] 
Pr[Gi = 1] + negl(�).

Proof. The same as the above case of opi = mod holds.

Lemma 17. Let opi = add then Pr[Gi�1 = 1] = Pr[Gi = 1].

Proof. Gi�1 and Gi are identical.

Lemma 18. Let opi = cfrom then for any PPT A in Gi there exists an algorithm E such that
Pr[Gi�1 = 1]  Pr[Gi = 1] + negl(�) of the strong RSA assumption holds.

Proof. Let E be the extractor of PoKSubV0 protocol that corresponds to A. Since PoKSubV0

is knowledge sound, E outputs (Fi�1
Ki ,⇡Ki ,⇡0Ki) such that Ver0(pp, �i�1,Ki,Fi�1

Ki ,⇡Ki) =

1 ^ Ver0(pp, �i,Ki,Fi�1
Ki ,⇡

0
Ki) = 1 ^ |Fi�1

Ki | = n0, where �i = (�?i, ni). Since abort1,
abort2, . . . , aborti�2 have not happen, from correctness of the V DS scheme it comes that
�i�1 = Com0(pp,Fi�1). From the �rst veri�cation equation above we get that under strong
RSA assumption Fi�1

Ki
✓ Fi�1. From the second veri�cation equation above we get that Fi�1

Ki
is

an opening of �i. From the third equation above we get that �i is a digest for a �le of size |Fi�1
Ki

|.
From the last two points we get that �i = Com0(pp,Fi�1

Ki ).
So Pr[Gi�1 = 1]  Pr[Gi = 1] + negl(�).

We conclude that in any case Pr[Gi�1 = 1]  Pr[Gi = 1] + negl(�). Since |H| = ` =
poly(�) with a hybrid argument we get that Pr[G0 = 1]  Pr[G` = 1] + negl(�). But clearly
G` = 0 always (since no abort has happened), and thus Pr[VDS-SecurityAVDS(�) = 1] =
P [G0 = 1] = negl(�).

6.8.2 Our Second VDS Construction

To construct our second VDS scheme, denoted VDS2, we build on our second SVC scheme from
section 6.5.2. The main dif�culty that we face in turning our SVC into a VDS is the specializtion
phase of the CRS, i.e. the trusted generation of U = g

Q
i2[n] ei . Although VDS schemes can

support a trusted setup phase, it can only be done once by the Bootstrap algorithm. However,
U depends on the current size of the �le (though not on its content), meaning that normally at
each addition (or deletion) to the �le it should be updated47. To solve this problem, we attach U
to the VDS’s digest (together with n for technical reasons), � = ((U,C), n).
Then, U can be built progressively while the �le is extended or reduced. Namely, when

adding new positions from the setK to the �le, all ei’s inK are added to the accumulator, i.e.
U 0  U

Q
i2K ei . The de�nition of VDS security (def. 35) ensures that the digest is evaluated

honestly which ensures that U has the correct form U = g
Q

i2n ei .
Finally, we make use of the dynamic properties of the [66, 145] scheme (in which our SVC

builds) and the RSA Accumulator, to construct the VDS scheme. The latter is important if one
47Another solution would be to recompute it at the veri�cation time, but it would require linear work, which

contradicts VDS requirements.
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notice that U = g
Q

i2[n] ei , SI = g
Q

i2[n]\I ei resemble an RSA Accumulator value and witness
respectively.

Our scheme VDS2. In the following � := ((U,C), n), st := ⇡I , where ⇡I := (SI ,⇤I). Also,
each ei is computed as ei  PrimeGen(i); so PrimeGen(i) is omitted for simplicity in the
description. VC.Agg,VC.Disagg are the aggregation and disaaggregation algorithms de�ned in
section 6.5.2. We highlight that possession of SI allows anyone to compute SJ  S

Q
j2I\J ej

I
for each J ✓ I , thus for simplicity we omit explicitly refer to the procedure of computing any
such SJ .

Bootstrap(1�, `)! (pp, �0, n0, st0) generates a hidden order group G Ggen(1�) and sam-
ples a generator g $G. It also determines a deterministic collision resistant functionPrimeGen
that maps integers to primes of `+ 1 bits. Set n0  0, �0  ((1, g), n0) and st0  g.

StrgNode.AddStorage(�, n, st, I,FI , Q,FQ,⇡Q)! (st0, J,FJ) aggregates the parameters and
the opening proofs

SI[Q  ShamirTrick(SI , SQ,
Y

i2I
ei,

Y

i2Q
ei) and ⇤I[Q  VC.Agg((SI , SJ), (I,FI ,⇤I), (J,FJ ,⇤J))

StrgNode.RmvStorage(�, n, st, I,FI ,K)! (st0, J,FJ) disaggregates

SJ  S
Q

i2I\K ei
I and ⇤J  VC.Disagg(SJ , I,FI ,⇤I , J)

StrgNode.PushUpdate(�, n, st, I,FI , op,�)! (�0, n0, st0, J,F0J ,⌥�) the algorithmworks ac-
cording to the type of update operation op:

• op = mod: � := (K,F0K).

C 0  C ·
Y

i2K
S
F0
i�Fi

i , U 0  U, ⇤0
I  ⇤I , S0

I  SI ⌥�  (FK , SK)

• op = add: � := (K,F0K).

C 0  C ·
Y

j2K
S
Fj

j , U 0  U
Q

i2K ei , ⇤0
I  ⇤I , S0

I  SI , ⌥�  SK

• op = del: � := K.

C 0  C
Q

j2K S
Fj

j

, U 0  S
Q

i2I\K ei
I = SK , ⇤0

I  ⇤
Q

j2K ej
I , S0

I  SI , ⌥�  (FK , SK)

StrgNode.ApplyUpdate(�, n, st, I,FI , op,�,⌥�)! (b, �0, n0, st0, J,F0J) Again, it works ac-
cording to the type of update operation op:

• op = mod: � := (K,F0K) and ⌥� := SK . Compute b (S
Q

j2K ej
K = U) and if b = 1:

C 0  C ·
Y

i2K
S
F0
i�Fi

i , U 0  U, ⇤0
I  ⇤I ·

Y

j2K\I

⇣
S
1/

Q
i2I ei

j

⌘F0
j�Fj

, S0
I  SI
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• op = add: � := (K,F0K) and ⌥� := SK . Compute b (S
Q

j2K ej
K = U) and if b = 1:

C 0  C·
Y

j2K
S
Fj

j , U 0  U
Q

i2K ei , ⇤0
I  ⇤I ·

Y

j2K

⇣
S
1/

Q
i2I ei

j

⌘Fj

, S0
I  S

Q
i2K ei

I

where S1/
Q

i2I ei
j = ShamirTrick(SI , Sj ,

Q
i2I ei, ej) for each j 2 K.

• op = del: � := K and ⌥� := (FK , SK). Compute b (S
Q

j2K ej
K = U) and if b = 1:

C 0  C
Q

j2K S
Fj

j

, U 0  SK ,

⇤0
I  

⇤
Q

i2K\I ei
I

Q
j2K\I

⇣
S
1/

Q
i2K\I ei

j

⌘Fj
, S0

I  ShamirTrick(SI , SK\I ,
Y

i2I
ei,

Y

i2K\I

ei)

StrgNode.Retrieve(�, n, st, I,FI , Q)! (FQ,⇡Q) disaggregates

SQ  S
Q

i2I\Q ei
I and ⇤Q  VC.Disagg(SQ, I,FI ,⇤I , Q)

The algorithms for client nodes are:

ClntNode.VerRetrieve(�, Q,FQ,⇡Q)! b output

b Ver(pp, C,Q,FQ,⇤Q) ^ S
Q

i2Q ei
Q = U

ClntNode.ApplyUpdate(�, op,�,⌥�)! (b, �0) This algorithm is almost identical to the �rst
part of the Storage Node algorithm StrgNode.ApplyUpdate(�, n, st, I,FI , op,�,⌥�). The
difference is that it executes only the parts that are related to the output of b and �.

AggregateCertificates(�, (I,FI ,⇡I), (J,FJ ,⇡J))! ⇡K return

SI[J  ShamirTrick(SI , SJ ,
Y

i2I
ei,

Y

i2J
ei) and ⇤K  VC.Agg ((SI , SJ), (I,FI ,⇤I), (J,FJ ,⇤J))

We note that we do not de�ne an ef�cient StrgNode.CreateFrom operation for the VDS2
construction. While general-purpose SNARKs would work to achieve this result, they would be
extremely expensive. We leave it as an open problem to �nd an ef�cient arguments of knowledge
of subvector opening for this scheme.

Theorem 28 (VDS2). Let G Ggen(1�) be a hidden order group where the strong Distinct-
Prime-Product Root and the Low Order assumptions hold. Then the VDS scheme presented
above is a correct and secure Veri�able Decentralized Storage scheme.

The intuition of the above theorem is as follows: the VDS scheme can be seen as preserving
and updating a vector commitment C and an RSA Accumulator U . So correctness of VDS
comes from correctness of the updatable vector commitment SVC and correctness of updates of
the RSA Accumulator (see [40]). Similarly, security comes from security of SVC and the RSA
accumulator’s security, which in turn rely on the strong distinct-prime-product root assumption

165



CHAPTER 6. INCREMENTALLY AGGREGATABLE VECTOR COMMITMENTS

and the strong RSA assumption respectively. Note that strong Distinct-Prime-Product Root
implies strong RSA (the opposite also holds in RSA groups).
Recall that U is an RSA accumulator of all ei’s and is used to verify SI ’s. The RSA

accumulator’s security demands that the accumulated value U is honestly computed, which
is ensured in the VDS setting since we assume a valid history. So given a valid history one
knows that U is of correct form (i.e. U = g

Q
i2[n] ei) and then can securely check that SI is of

correct form (by checking S
Q

i2I ei
I = U ), which is ensured from RSA Accumulator’s security.

After checking the validity of SI it all boils down to position binding of the vector commitment.
To conclude, the gap between position binding of the original VC and security of our VDS
construction is to ensure that SI is well formed, which in turn relies on the correct form of U .

6.8.3 Ef�ciency and Comparison

In Table 6.3 we provide a detailed ef�ciency analysis and comparison of the two VDS schemes,
VDS1 and VDS2, proposed in the two earlier sections.

In terms of performances, the two schemes do similarly, though VDS2 outperforms the �rst
one by a logarithmic factor. Its ef�ciency advantage comes from the fact that operations are
not bit-by-bit as in the �rst one. More in detail, in VDS1 most of the operations require one
exponentiation with an ↵-bit prime for each bit and each position of the sub�le, roughlyO(` · |I| ·
↵) group operations. In VDS2, the main overhead is related to handling the distributed parameters
{Si}. In fact, computing Si for each i 2 I , given SI takes O(I log |I|) exponentiations with
(`+ 1)-bit primes, roughly O(` · |I| · log |I|) group operations.

To compare the two methods, recall that ↵ is at least log(`n) (since we need at least `n
distinct primes), which means that VDS1 has a (logarithmic) dependence on the size of the �le.
On the other hand, VDS2’s cost depends only on the size of the sub�le that is processed. Hence,
since ↵ > log(`n) > log(n) � log(|I|) the VDS2 always outperforms VDS1 (see Table 6.3).

Another notable difference regards the StrgNode.PushUpdate algorithm for op = mod. In
VDS2, the running time depends solely on the size of the update, whereas in VDS1 it depends on
the size of the entire sub�le stored locally. This can be a huge difference for nodes that decide to
store large portions, and it constitutes a major theoretical (and practical) improvement of VDS2
over VDS1.

In terms of security, VDS1 is based on a weaker assumption48, over groups of unknown order,
than VDS2 (although for the speci�c case of RSA groups the two assumptions are equivalent).
Finally, in terms of functionality, VDS1 is the only scheme that can support ef�ciently the
StrgNode.CreateFrom functionality and the (compact) Proofs of Data Possession; this is thanks
to its compatibility with the ef�cient succinct arguments of knowledge that we propose in section
6.6.

48This holds when considering the basic scheme without the StrgNode.CreateFrom functionality.
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Metric VDS1 VDS2
Bootstrap O(1) O(1)

|pp| 3 |G| 1 |G|
Digest |�| 2 |G|+ log |F| 2 |G|+ log |F|
Storage Node storing (I,FI)
State |stI | 2 |G| 2 |G|

StrgNode.AddStorage (K) O(` · ↵ · (|I|+ |K|)) O(` · (|I| log |I|+ |K| log |K|))
StrgNode.RmvStorage (K) O(` · ↵ · |K|) O(` · |K| log |K|)
StrgNode.CreateFrom (J) O(` · ↵ · |I|)

no 1
|⌥J | 9 |G|+ 2 |Z2k |

StrgNode.PushUpdate (�)

mod O(` · ↵ · |I|) O(` · |�| log |�|)
add O(` · ↵ · |�|) O(` · |�| log |�|)
del O(` · ↵ · (|I|� |�|)) O(` · (|I|� |�|+ |�| log |�|))

|⌥�|
mod, del O(|�|) + 2 · |G| O(|�|) + 1 · |G|

add ? 1

StrgNode.ApplyUpdate (�)

mod O(` · ↵ · (|I|+ |�|)) O(` · (|I|+ |�| log |�|))
add O(` · ↵ · |�|) O(` · (|I|+ |�| log |�|))
del O(` · ↵ · (|I|+ |�|)) O(` · (|I|+ |�| log |�|))

StrgNode.Retrieve (Q) O(` · ↵ · (|I|� |Q|)) O(` · (|I|� |Q|) log(|I|� |Q|))
|⇡Q| 2 |G| 2 |G|

Client Node
ClntNode.GetCreate (J) O(` · ↵ · |J |) no 1

ClntNode.VerRetrieve (Q) O(` · ↵ · |Q|) O(` · |Q| log |Q|)
ClntNode.ApplyUpdate (�) (mod, add, del) O(` · ↵ · |�|) O(` · |�| log |�|)

AggregateCertificates (I, J) O(` · ↵ · (|I|+ |J |)) O(` · (|I| log |I|+ |J | log |J |))
PoR yes yes
PDP yes no 1

Table 6.3: Comparison between our two VDS schemes. The running time is expressed in number
of G-group operations. Notation for the sets of positions: I are the ones held by the storage
node,K the ones added or removed from local storage by the storage node, J the ones used to
create the �le in StrgNode.CreateFrom,� the updated ones, andQ the ones of a retrieval query.
In VDS1, ↵ denotes the size of the primes (returned by PrimeGen); so ↵ � log(n`) where n is
the size of the �le and ` the bit-size of each position (i.e. F 2 ({0, 1}`)n).
1 Such a protocol exists but it is either inef�cient for the prover (SNARKs) or it has a large overhead in communication
complexity (⌃-protocols or PoKE-based ones).

6.9 PoProd protocol for Union of RSA Accumulators

Let G be a an hidden order group as generated by Ggen, and let g1, g2, g3 2 G be three honestly
sampled random generators. A more straightforward succinct argument of knowledge for the
union of RSA Accumulators is for the following relation

RPoProd =
�
((A,B,C), (a, b)) 2 G3 ⇥ Z2 : A = ga1 ^B = gb2 ^ C = ga·b3
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Our protocol PoProd is described below.

PoProd protocol

Setup(1�) : run G $Ggen(1�), g1, g2, g3 $G, set crs := (G, g1, g2, g3).
Prover’s input: (crs, (A,B,C), (a, b)). Veri�er’s input: (crs, (A,B,C)).

V! P: ` $P(1, 2�)
P! V: ⇡ := ((QA, QB, QC), ra, rb) computed as follows

• (qa, qb, qc) (ba/`c, bb/`c, bab/`c)
• (ra, rb) (a mod `, b mod `)

• (QA, QB, QC) := (gqa1 , gqb2 , gqc3 )

V(crs, (A,B,C), `,⇡):

• Compute rc  ra · rb mod `

• Output 1 iff ra, rb 2 [`] ^ Q`
Ag

ra
1 = A ^ Q`

Bg
rb
2 = B ^ Q`

Cg
rc
3 = C

To prove the security of our protocol we rely on the adaptive root assumption and, in a
non-black-box way, on the knowledge extractability of the PoKE protocol from [40]. The latter
is proven in the generic group model for hidden order groups (where also the adaptive root
assumption holds).

Theorem 29. The PoProd protocol is an argument of knowledge for RPoProd in the generic
group model.

The proof is quite similar to the one of theorem 20 only instead of using the extractor if
PoKRep protocol we use the extractors of two PoKE protocols (one for ga1 = A and one for
gb2 = B).

6.10 Comparison with the [40] SVC on Committing and Opening
with Precomputation

We discuss how the preprocessing technique can also be applied to the SVC scheme of [40]
(instantiated for binary vectors of length n = N`). In this case, however, we will not use the
incremental disaggregation and aggregation but only one-hop aggregation.

Let us recall that in [40] a commitment to v 2 {0, 1}n is Acc = gb with b =
Q

j2[n],vj=1 pj .
When asked for opening of some positions in the set I , the vector owner has to provide a
batched membership proof for all {pj : j = (i� 1)`+ l, i 2 I, l 2 [`], vj = 1} and a batched
non-membership proof for all {pj : j = (i� 1)`+ l, i 2 I, l 2 [`], vj = 0}.

For the membership proofs, we can use ideas similar to the ones discussed earlier. In the com-
mitment phase one can precompute {Wi = gb/bi : i 2 [N ]} where bi =

Q
l2[`],vil=1 p(i�1)`+l,

which can be done in time O(N logN · ` log(`N)) using the RootFactor algorithm from
[188, 40]. This adds at most N elements of G to the advice information. Next, in the opening
phase, in order to compute a membership witness for a set of positions I one can use the ag-
gregation property to compute a witnessWI from allWi with i 2 I , which is doable in time
O(m logm).
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For the non-membership proof, there are instead two options:

1. Compute the batch-nonmembership witness from scratch

2. Precompute and store (unbatched) non-membership witnesses for all 0’s of the vector and
then aggregate the necessary ones to provide the opening asked.

We argue that an intermediate solution of precomputing a fraction of non-membership witnesses
and computing the rest from scratch does not provide any bene�t since even if a single non-
membership witness needs to be computed, it requires the whole vector and computing the
corresponding product of primes. So, in the end the intermediate solution will be more costly
than both the above ones.

1. Compute non-membership witness from scratch. To compute a non-membership witness one
needs the product b of all the primes in the accumulator (i.e., all primes that correspond to 1’s in
v). There are in turn two possible ways to deal with this:

• Precompute and store b, which requires O(log(N`) ·N · `) computation and |b| = O(N · ` ·
log(N`)) bits of storage.

• Compute b online from all pi’s, which requires O(log(N`) ·N · `) computing power.

The computations needed to obtain a single non-membership witness is proportional to the
size of b, which is O(` ·N · log(`N)) G. Hence, virtually there is no big improvement in the
opening time by precomputing b, since the group exponentiations are more costly (although
concretely it saves the online computation of it). Furthermore, keeping |b| = O(N · ` · log(N`))
bits of storage may get impractical for big N .

2. Precompute non-membership witnesses and then aggregate. The idea is similar to the
aggregation technique mentioned above for membership witnesses. However, a crucial difference
is that, as stated in [40], for non-membership witnesses one has only one-hop aggregation. This
means one must precompute and store non-membership witnesses for each block of the vector.
However these non-membership witnesses have size proportional to the number of bits of each
block (plus one group element).

This technique requires storage ofO(N) group elements plusO(N ·` log(N`)) �eld elements
on average. Precisely, the size of a non-membeship witness for each block is |G|+ log(N`)⇥
#{0-bits in the block}, hence the total size of non-membership witnesses isN |G|+N` log(N`)
in the worst case and N |G| +N` log(N`)/2 in an average case where half of the bits of the
vector are 0. To conclude, with the VC of [40], one would need, on average, to precompute and
store 2N |G|+N` log(N`)/2 bits.

Comparison. To conclude, even if we consider the caseB = 1, both our solutions require much
less storage than in [40]: 2N |G| vs. 2N |G|+N` log(N`)/2 bits. In terms of computing time,
the preprocessing has roughly the same complexity in all three solutions, although our second
scheme is slightly less favorable due to the log2m factor in the opening. Comparing [40] and
our �rst scheme, in [40] the computing time for an opening ofm blocks requires at least 50%
more time than in our �rst scheme due to the handling of non-membership witnesses (which
leads to 25% more time in the average case).
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7
INNER PRODUCT FUNCTIONAL COMMITMENTS
FROM SET ACCUMULATORS

The results of this chapter appear in a paper under the title "Inner Product Functional Com-
mitments with Constant-Size Public Parameters and Openings" published at the SCN 2022
conference [76].

7.1 Technical Contributions

We summarize the results of this chapter below.

• FC for binary inner products with constant-size openings. Our �rst result is a functional
commitment that supports the evaluation of binary inner products over the integers. Namely
one can commit to a vector v 2 {0, 1}n and, for any f 2 {0, 1}n, open the commitment to
hv,fi computed over Z. The scheme works over groups of unknown order and, due to the use
of succinct proofs of exponentiation from [40], relies on the random oracle and generic group
models. The scheme’s public parameters are four group elements, while openings consist of
21 elements of the hidden-order group, and 14� bits.

While all prior FCs for inner products use techniques that somehow rely on the homomorphic
property of an underlying vector commitment, our construction departs from this blueprint
and shows a new set of techniques for proving an inner product. In a nutshell, we start from
the �rst vector commitment of Campanelli et al. [59], which uses an encoding of a vector
based on two RSA accumulators, and then we show how to reduce the problem of proving an
inner product with a public function to that of proving that a certain exponent lies in a range.
To the best of our knowledge, this technique is novel. Also, a core part of this technique is a
way to succinctly prove the cardinality of a set in an RSA accumulator, which we believe can
be of independent interest.

• FC for integer inner products. Our second result is a collection of transformations that lift
an FC for binary inner products, like the one above, to one that supports the computation
of inner products over the integers and over �nite rings. More in detail, we show two main
transformations for the following functionality: one can commit to a vector v 2 (Z2`)

n and,
for any f 2 (Z2m)n, open the commitment to hv,fi computed over Z.
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Through the �rst transformation, we obtain an FC whose openings have size of O(` +m)
group elements and additive (` + m) log(`n) bits, and whose algorithms running time is
approximately (`+m) times that of the FC for binary inner products.

Through the second transformation, we achieve a different tradeoff: the algorithms’ running
time grow by a factor 2`+m but openings have a �xed size O(1) group elements.

We also show analogues of both transformations for the case of inner products modulo any
integer p, i.e., for h·, ·i : Zn

p ⇥ Zn
p ! Zp, that yield FCs with the same complexity as the ones

above, considering ` andm as the bitsize of p.

Among the two, the second transformation is of particular interest because, in the case of
`,m = O(log �) (resp. p = poly) it yields functional commitment schemes with constant-size
openings.

Finally, due to the known construction of polynomial commitments from functional com-
mitments for inner products (see above), our FCs also imply polynomial commitments with
transparent setup for polynomials in Zp[X].

• Comparison and concrete interpretation of our results. As mentioned above, the objective
of our work is to eliminate any dependence on the size of the parameters and proofs on the
vector length n. Our constructions have sizes dependent only on the security parameter �.
When concretely instantiating the group of unknown order these sizes get O(�2) for class
groups [129, 35, 94] or O(�3) for RSA groups.

On the other hand, elliptic curve group elements typically have size O(�). Therefore, if we
consider polynomial lengthsn = poly then elliptic curve-based functional vector commitments
as Bulletproofs [52] have proof size O(� log n) = O(� log �), which are concretely more
ef�cient. For this, our results �rstly serve as feasibility results for the complexity of the
sizes of functional vector commitments. We note, however, that our solutions would still be
asymptotically better if different unknown order group instantiations with optimal O(�) size
were introduced, or in complexity leveraging scenarios where one considers super-polynomial
vector sizes, n > poly.

This asymptotic drawback of constant-sized constructions is typical for many primitives
based on groups of unknown order such as RSA accumulators [29, 18, 152, 40], vector
commitments [66, 145, 40, 59] or SNARKs [145].

Therefore, if we compare to the functional commitment built using the Bulletproofs inner
product argument [52] (which to the best of our knowledge is currently the most ef�cient
one that admits constant-sized and transparent parameters) the proof sizes of our schemes are
concretely larger (for n = poly). On the other hand, our FC has two main advantages. The �rst
one is �exibility. Our FC “natively” supports inner products over Zp for any integer p, whereas
Bulletproofs only supports inner products over Zq where q is the prime modulus of a group
G where discrete logarithm holds.49 The second advantage is that in our FC the veri�cation
algorithm admits preprocessing, that is, after spending O(n) group exponentiations for a
deterministic preprocessing of the function f , the rest of the veri�cation has a �xed costO(�).
Notably, inner product arguments based on the folding techniques of Bootle et al. [44] do not
49One could use Bulletproofs arithmetic circuit protocol in order to simulate mod p algebra over Zq , at the price

of a prover’s overhead.
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admit this preprocessing, as their veri�cation time is O(n) independently of the time to read
the statement.

7.2 Building Blocks

7.2.1 Succinct Proofs of Exponentiation

We make use of the following succinct arguments of knowledge of exponents over groups of
unknown order. Below we describe the protocols’ functionalities and defer their description to
Section 7.6.

PoKE. First we recall the proof of knowledge of exponent (PoKE) of [40] for the language:

LPoKE =
�
(Y, u;x) 2 G2 ⇥ Z : Y = ux

 

parametrized by a group G $Ggen(�) and a group element g $G. The protocol is succinct:
it consists of 3 G-element and 1 Z2�-element and the veri�cation time is O(�), both regardless
of the size, kxk, of the witness.

PoDDH. We also recall the proof of knowledge of a Dif�e-Hellman tuple (PoDDH) of [59],
for the language:

LPoDDH =
�
(Y0, Y1, Y ;x0, x1) 2 G3 ⇥ Z2 : gx0

0 = Y0 ^ gx1
1 = Y1 ^ gx0x1 = Y

 

parametrized by a group G $Ggen(�) and three group elements g, g0, g1 $G. Notice that,
unlike the usual DH-tuple, in the above protocol the bases are different and honestly generated
in the setup. However, the same protocol can work for the same base, g = g0 = g1. Similarly to
the PoKE, the protocol is succinct: 3 G-elements and 2 Z2�-elements and O(�).

PoRE. We wil make use of a succinct protocol (PoRE) proving that the exponent of an element
Y = gx lies in a certain range, x 2 [L,R].

LPoRE =
�
(Y, L,R;x) 2 G⇥ Z3 : L < x < R ^ gx = Y

 
.

parametrized by a group G $Ggen(�) and a group element g $G.
For this we rely on the square-decomposition technique [151, 125]. That is, an integer x is

in the range [L,R] if and only if there exist (x1, x2, x3) 2 Z3 such that 4(x�L)(R� x) + 1 =P3
i=1 x

2
i . The proof consists of the following subprotocols (run in parallel):

• For each i = 1, 2, 3, the prover computes xi, sends Zi = gx
2
i for i 2 [3] and involves with the

veri�er in a succinct argument of knowledge of square exponent (PoSE) proving the validity
of the last:

LPoSE =
n
(Zi;xi) 2 G⇥ Z : gx

2
i = Zi

o
.

PoSE is presented as a stand-alone protocol in Section 7.6 Figure 7.8.

• The prover sends Y 0 = g(x�L)(R�x) and involves in a PoDDH protocol with the veri�er for
the tuple (gx�L, gR�x, Y 0). Observe that gx�L, gR�x can be computed homomorphically by
the veri�er from Y = gx, thus don’t have to be sent.

• Finally, the veri�er merely checks if Y 04 · g =
Q3

i=1 Zi.
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All the above protocols are knowledge-extractable in the generic group model for groups of
unknown order [87, 40].

Non-interactive versions. All protocols can be made non-interactive by the standard Fiat-
Shamir transformation [101].50

7.3 Our Functional Commitment for binary inner products

In this section we present our core construction of Functional Commitments for binary inner
products with constant-size parameters and openings. Precisely, in the scheme we commit to
binary vectors v = (v1, . . . , vn) 2 {0, 1}n and the class of functions is F = {Fn} where, for
every positive integer n, Fn = {f : {0, 1}n ! Z} such that f is a linear function represented
as a vector of binary coef�cients, i.e., f = (f1, . . . , fn) 2 {0, 1}n, and computes the result as
the inner product

y = hf ,vi =
nX

i=1

fi · vi 2 Z.

Note that, for a �xed n, every possible result y is an integer in {0, . . . , n}. Our starting point is
the vector commitment (VC) of Campanelli et. al. [59], which is based on RSA accumulators [29,
18, 152, 40]. In [59], each position of v is encoded as a prime, via a collision-resistant hash-to-
prime function Hprime(i)! pi for each i 2 [n]. Then, in order to commit to v, one creates two
RSA accumulators, C0, C1: the former that accumulates all primes corresponding to zero-values
of v ({pi = Hprime(i) : vi = 0}), and the latter for one-values ({pi = Hprime(i) : vi = 1})
respectively. That is merely, C0 = g

Q
vi=0 pi

0 and C1 = g
Q

vi=1 pi
1 . Observe that these two sets of

primes form a partition of all the primes corresponding to positions {1, . . . , n}. For binding of
the commitment, they also add a succinct proof PoDDH to show that the sets in C0 and C1 are
indeed a partition.

Starting from this vector commitment, our contribution is a new technique that allows us to
create inner product opening proofs. To this end, our �rst key observation is that:

y = hv,fi =
X

i

vifi =
X

fi=0

vi · 0 +
X

fi=1

vi · 1 =
X

fi=1

vi = |{i 2 [n] : fi = 1, vi = 1}|

since both vi and fi are binary. Then the prover commits to the subvector of v corresponding to
positions where fi = 1. This is done by using the same vector commitment described previously.
That is, we compute F0 = g

Q
fi=1,vi=0 pi

0 and F1 = g
Q

fi=1,vi=1 pi
1 , accompanied with a PoDDH

proof ⇡0PoDDH of Dif�e-Hellman tuple for the tuple (F0, F1, F ), for F = g
Q

fi=1 pi . Notice that
F can be computed by only knowing f , without knowledge of v.
The next step to prove the inner product is to show that (F0, F1) is actually a commitment

to a subvector of v. This is done by showing that F0 accumulates a subset of the primes of
C0, and similarly F1 accumulates a subset of the primes of C1. Putting it in other words, the
‘exponent’ of Fb is contained in the accumulatorCb: there is aWb such thatW

Q
fi=1,vi=b pi

b = Cb

and Fb = g
Q

fi=1,vi=b pi
b , for b = 0, 1. The last can be proven in a succinct way via a simple

concatenation of two PoKE proofs, ⇡0,⇡1.
50In these types of proofs though one should set ` to be of size 2� for the non-interactive case [39].
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Observe now that the F1 accumulates exactly the (primes corresponding to) positions that
contribute to the inner product {i 2 [n] : fi = 1, vi = 1}. The number of primes that F1

contains in its ‘exponent’ is exactly y. All that is missing now is a way to convince the veri�er
about the number of primes in the exponent of F1. For this, we set the size of each prime pi to
be such that the range of any product

Q
i2I pi determines uniquely the cardinality of I (i.e., the

number of primes in the product). This way, a range proof for the ‘exponent’ of F1 can convince
the veri�er about the cardinality of the accumulated set, which is the inner product result y. For
this, we generate a succinct range proof ⇡PoRE using our protocol of section 7.2.1.
The veri�er, holding the commitment (C0, C1,⇡PoDDH), receives the opening proof (F0,

F1, ⇡0PoDDH, W0, ⇡0, W1, ⇡1, ⇡PoRE). It is important to make sure that F1 contains exactly
the primes of positions where fi = 1 and vi = 1. The (F1, C1)-‘subvector’ proof ⇡1 ensures
that vi = 1 for all its primes (since C1 contains only primes for vi = 1). For the fi = 1 part,
the veri�er herself computes F = g

Q
fi=1 pi and veri�es that (F0, F1, F ) is a DH tuple through

⇡0PoDDH. This ensures that (1) all the primes in the exponents of F0, F1 are for fi = 1 and (2)
no position i for fi = 1 was excluded maliciously; all of them were either put in F0 or F1. This
convinces the veri�er that exactly the positions i where fi = 1, vi = 1 are in the ’exponent’ of
F1.

7.3.1 Functional VCs for binary linear functions from range proofs

Here we formally describe our construction. We simplify the notation omitting the indicator i 2
[n] from the sums and the products below. For example

P
i xi would implicitly mean

P
i2[n] xi

and
Q

vi=1 xi would implicitly mean
Q

i2[n],vi=1 xi. Furthermore, we use abbreviations for
some products we will use that can be found in Figure 7.1.

prod =
Q

i Hprime(i)

prod0 =
Q

vi=0 Hprime(i)

prod1 =
Q

vi=1 Hprime(i)

fprod =
Q

fi=1 Hprime(i)

fprod0 =
Q

fi=1,vi=0 Hprime(i)

fprod1 =
Q

fi=1,vi=1 Hprime(i)

Figure 7.1: Summary of symbols for the products used in the construction.

Setup(1�)! pp : The setup algorithm generates a hidden order group G  Ggen(1�) and
samples three generators g, g0, g1 $G. It determines a collision-resistant function Hprime
that maps integers to primes and it returns pp = (G, g, g0, g1).

Specialize(pp, n)! ppn : The algorithm samples a collision-resistant function Hprime that
maps integers to primes.51 Computes prod =

Q
i Hprime(i) and sets Un = gprod. Returns

ppn = (pp,Hprime, Un).

Com(ppn,v)! C : The commitment algorithm takes as input a vector of bitsv = (v1, . . . , vn) 2
{0, 1}n. It computes the product of all primes that correspond to a zero-value of the vector
(i.e., vi = 0) as prod0 =

Q
vi=0 Hprime(i), and similarly prod1 =

Q
vi=1 Hprime(i) for the

one-values. Next, it computes the accumulators

C0 = g
prod0
0 and C1 = g

prod1
1

51As we discuss next and in more detail in Section 7.3.3, the choice of Hprime depends on n.
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and a PoDDH proof ⇡ = PoDDH.P ((G, g, g0, g1), (C0, C1, Un), (prod0, prod1)), which en-
sures that, given the above (C0, C1, Un), it holds prod = prod0 · prod1:

L =
n
(C0, C1, Un; prod0, prod1) : g

prod0
0 = C0 ^ g

prod1
1 = C1 ^ gprod0·prod1 = Un

o

Returns C = (C0, C1,⇡).

Open(ppn, C,v,f)! (y,⇤) : f = (f1, . . . , fn) 2 {0, 1}n is a vector of bits. The output of
the function is

y = hv,fi =
X

vifi =
X

fi=0

vi · 0 +
X

fi=1

vi · 1 =
X

fi=1

vi

Let fprod =
Q

fi=1 Hprime(i), fprod0 =
Q

fi=1,vi=0 Hprime(i) and fprod1 =
Q

fi=1,vi=1 Hprime(i).
Computes F = gfprod and

F0 = g
fprod0
0 and F1 = g

fprod1
1

Then computes the following arguments of knowledge:

• ⇡0: a proof that F0 contains a ‘subvector’ of C0, i.e. a proof for the language:

L0 =
n
(F0,W0; fprod0) : W

fprod0
0 = C0 ^ g

fprod0
0 = F0

o

• ⇡1: a proof that F1 contains a ‘subvector’ of C1, i.e. a proof for the language:

L1 =
n
(F1,W1; fprod1) : W

fprod1
1 = C1 ^ g

fprod1
1 = F1

o

• ⇡2: a PoDDH for F0, F1, F :

L2 =
n
(F0, F1, F ; fprod0, fprod1) : g

fprod0
0 = F0 ^ g

fprod1
1 = F1 ^ gfprod0·fprod1 = F

o

• ⇡3: a range proof that fprod1 is in a certain range L(y) < fprod1 < R(y), that is uniquely
determined by y. L and R are public functions that depend on Hprime (see Figure 7.2 for
their concrete description).

L3 =
n
(F1, y; fprod1) : L(y) < fprod1 < R(y) ^ g

fprod1
1 = F1

o

Returns ⇤ = (F0, F1,W0,W1,⇡0,⇡1,⇡2,⇡3)

Ver(ppn, C,⇤,f , y) ! b : It computes F = gfprod = g
Q

fi=1 Hprime(i) that depends only on
f and outputs 1 iff all ⇡,⇡0,⇡1,⇡2,⇡3 verify. Notice that computing F is necessary as is an
input to the proof ⇡2.

Hprime : [n]!
⇣
2(�), 2(�)+

(�)
n

⌘
collision-resistant hash-to-prime function.

L(y) =

(
2(�)y, y 2 [n]

1, y = 0
and R(y) =

(
2((�)+

(�)
n )y, y 2 [n]

1, y = 0

Figure 7.2: De�nitions of the range functions L,R. The functions depend on the range Hprime,
which in turn depends on n and � (speci�ed in the setup and specialize phases respectively).
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Remark 22. For ease of presentation, in the Open algorithm, we describe four distinct proofs,
⇡0,⇡1,⇡2,⇡3. In order to optimize the proof size, they can be merged into a single proof avoiding
redundancies. We present in details the (merged) protocol in Section 7.3.3.

Determining the hash function and the rangeWe need to �nd a proper hash-to-prime function
and a corresponding range [L(y), R(y)] for fprod1 such that for any y = 1, . . . , n:

fprod1 :=
Y

vi=1,fi=1

Hprime(i) 2 [L(y), R(y)] ,
��{i 2 [n] : vi = 1, fi = 1}

�� = y

meaning that a range for the product of the primes should translate to its number of prime factors.
And the correspondence should be unique. E.g. p2p7p11 2 [L,R] , 3 factors , y = 3. For
the degenerate case of y = 0, fprod = 1.
The following lemma shows that such Hprime, L,R exist and speci�es their parameters:

Lemma 19. Assume a collsion-resistant function that maps integers to prime numbers, Hprime :

[n] !
⇣
2(�), 2(�)+

(�)
n

⌘
, parametrized by � and n, and functions L : {0, . . . , n} ! Z,

R : {0, . . . , n} ! Z such that L(y) = 2y and R(y) = 2(+

n )y respectively. Then for any

I ✓ [n]: Y

i2I
Hprime(i) 2 [L(y), R(y)] , |I| = y

Proof. For any number of factors y = 1, . . . , n we have 2y <
Q

i2[y] pi < 2(+

n )y. Since

y + y
n < (y + 1) for any y 2 [n] all ranges are distinct. So the mapping is ’1-1’.

In Section 7.3.3 we discuss concrete instantiations for the function Hprime and consequently
L and R.

7.3.2 Security

Correctness. Follows from correctness of the [59] Vector Commitment, correctness of PoKE,
PoDDH, PoRE arguments of knowledge and from Lemma 19.

Function Binding. Our proof strategy is the following. Given two openings ⇤ and ⇤0 of the
same commitment C to distinct outputs y, y0, we �rst use the ‘subvector’ proofs’ extractors
⇡0,⇡1,⇡00,⇡

0
1 to argue that (the exponents of) (F0, F1) and (F 0

0, F
0
1) are subvectors of C. Then

we use the PoDDH’s extractors ⇡2,⇡02 to argue that in fact these subvectors are for the same
subset of positions I1 = {i 2 [n] : fi = 1}. For the latter we also use the collision-resistance of
Hprime. Then we use the extractors of PoRE ⇡3,⇡03 for F1 and F 0

1 resp., the fact that y 6= y0 (by
de�nition of the game) and lemma 19 to argue that these subvectors (for the same positions) are
different. Finally, we argue that this fact, having two different subvectors for the same subset
of positions and commitment C, contradicts the position-binding property of the [59] Vector
Commitment.

Theorem 30. LetGgen be a hidden order group generator where the [59] VC is position binding,
PoKE,PoDDH,PoRE be succinct knowledge-extractable arguments of knowledge and Hprime
be collision-resistant. Then our functional commitment for binary inner products is function
binding.
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Proof. We organize the proof in hybrid arguments. To start with, we de�ne the game G0 as the
original functional binding game of De�nition 13, and our goal is to prove that for any PPT
adversary A and any n 2 N, Pr[G0 = 1] 2 negl(�).
Game G0:

G0 = FuncBindA,FC(�)

pp Setup(1�); ppn  Specialize(pp, n)

(C,f , y,⇤, y0,⇤0) A(pp)

b Ver(ppn, C,⇤,f , y) = 1 ^ y 6= y0 ^ Ver(ppn, C,⇤
0,f , y0)

return b

For any adversary A against G0, there exist the extractors of the proof of ‘subvector’
⇡0,⇡1,⇡00,⇡

0
1.

GameG1: is the same asG0 except that we execute the extractors E0, E1, E 0
0, E 0

1 of ⇡0,⇡1,⇡00,⇡01,
which output (W0, fprod0) , (W1, fprod1) ,

�
W 0

0, fprod
0
0

�
and

�
W 0

1, fprod
0
1

�
, respectively.

G1

pp Setup(1�); ppn  Specialize(pp, n)

(C,f , y,⇤, y0,⇤0) A(pp)

fprod0  E0(G, g0); fprod1  E1(G, g1)

fprod00  E 0
0(G, g0); fprod

0
1  E 0

1(G, g1)

b =
^

i=0,1

⇣
(W fprodi

i = Ci) ^ (W 0fprod0i
i = Ci) ^ (gfprodii = Fi) ^ (gi

fprod0i = F 0
i )
⌘

b Ver(ppn, C,⇤,f , y) = 1 ^ y 6= y0 ^ Ver(ppn, C,⇤
0,f , y0)

if b = 0 then b 0

return b

where above ⇤ = (F0, F1,W0,W1,⇡0,⇡1,⇡2,⇡3), ⇤0 = (F 0
0, F

0
1,W

0
0,W

0
1,⇡

0
0,⇡

0
1,⇡

0
2,⇡

0
3) and

ppn = (G, g, g0, g1,Hprime, Un).
It is easy to see that the games G0 and G1 are identical except if b = 0. However, b = 0

only when one of the witnesses returned by the extractors is incorrect. By the knowledge
extractability of the proof of ‘subvector’ we obtain that

Pr[G0 = 1]� Pr[G1 = 1]  Pr[b = 0] 2 negl(�).

Game G2: is the same as G1 except the case fprod0 · fprod1 6= fprod or fprod00 · fprod01 6=
fprod.
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G2

pp Setup(1�); ppn  Specialize(pp, n)

(C,f , y,⇤, y0,⇤0, ) A(pp)

fprod0  E0(G, g0); fprod1  E1(G, g1)

fprod00  E 0
0(G, g0); fprod

0
1  E 0

1(G, g1)

b =
^

i=0,1

⇣
(W fprodi

i = Ci) ^ (W 0fprod0i
i = Ci) ^ (gfprodii = Fi) ^ (gi

fprod0i = F 0
i )
⌘

bcol = (fprod0 · fprod1 = fprod) ^
�
fprod00 · fprod

0
1 = fprod

�

b Ver(ppn, C,⇤,f , y) = 1 ^ y 6= y0 ^ Ver(ppn, C,⇤
0,f , y0)

if b = 0 _ bcol = 0 then b 0

return b

where above ⇤ = (F0, F1,W0,W1,⇡0,⇡1,⇡2,⇡3), ⇤0 = (F 0
0, F

0
1,W

0
0,W

0
1,⇡

0
0,⇡

0
1,⇡

0
2,⇡

0
3) and

ppn = (G, g, g0, g1,Hprime, Un).

Lemma 20. Assume that the Low order assumption holds forGgen, thenPr[G1 = 1]�Pr[G2 =
1] 2 negl(�).

Proof. We consider a game G0
2 by running the extractors of the PoDDH proofs ⇡2 and ⇡02,

which outputs (fprod0, fprod1) s.t. g
fprod0
0 = F0 ^ g

fprod1
1 = F1 ^ gfprod0·fprod1 = F and

(fprod0
0
, fprod1

0
) s.t. gfprod0

0

0 = F 0
0 ^ g

fprod1
0

1 = F 0
1 ^ gfprod0

0·fprod1
0
= F , respectively. It is easy

to see that Pr[G2 = 1]� Pr[G0
2 = 1] 2 negl(�). The following equalities hold:

gfprod0·fprod1 = gfprod0
0·fprod1

0
= F ;

g0
fprod0 = F0; g0

fprod0
0
= F 0

0;

g1
fprod1 = F1 and g1fprod1

0
= F 0

1.

The gameG0
2 only differs fromG1 in the case (fprod0 · fprod1 6= fprod)_

�
fprod00 · fprod01 6= fprod

�
.

We divide it into two cases.
Case 1: fprod0 · fprod1 6= fprod or fprod00 · fprod01 6= fprod. The �rst inequality implies that

there exists 1 6= v = fprod� fprod0 · fprod1 < 2poly such that gv = 1, which is a violation to
the Low order assumption and occurs with a negligible probability. The second one implies a
similar result.
Case 2: the two above equalities hold. Then G0

2 differs from G1 only if one of the four
following inequalities holds.

fprod0 6= fprod0; fprod0
0 6= fprod00; fprod1 6= fprod1 or fprod1

0 6= fprod01.

Again, any of these inequalities imply a low order root of 1.
Therefore, Pr[G1 = 1]� Pr[G2 = 1] 2 negl(�).

Game G3: is obtained by adding the range check for fprod1 and fprod01 to G2.

178



CHAPTER 7. INNER PRODUCT FUNCTIONAL COMMITMENTS FROM SET
ACCUMULATORS

G3

pp Setup(1�); ppn  Specialize(pp, n)

(C,f , y,⇤, y0,⇤0, ) A(pp)

fprod0  E0(G, g0); fprod1  E1(G, g1)

fprod00  E 0
0(G, g0); fprod

0
1  E 0

1(G, g1)

b =
^

i=0,1

⇣
(W fprodi

i = Ci) ^ (W 0fprod0i
i = Ci) ^ (gfprodii = Fi) ^ (gi

fprod0i = F 0
i )
⌘

bcol = (fprod0 · fprod1 = fprod) ^
�
fprod00 · fprod

0
1 = fprod

�

brange = (fprod1 2 [L(y), R(y)]) ^
�
fprod01 2 [L(y0), R(y0)]

�

b Ver(pp, C,⇤,f , y) = 1 ^ y 6= y0 ^ Ver(pp, C,⇤0,f , y0)

if b = 0 _ bcol = 0 _ brange = 0 then b 0

return b

where above ⇤ = (F0, F1,W0,W1,⇡0,⇡1,⇡2,⇡3), ⇤0 = (F 0
0, F

0
1,W

0
0,W

0
1,⇡

0
0,⇡

0
1,⇡

0
2,⇡

0
3) and

ppn = (G, g, g0, g1,Hprime, Un).
The two games G2 and G3 are different only in the case the range check fails, which

means either ⇡3 or ⇡03 is incorrect. By the argument of knowledge of PoRE, we conclude that
Pr[G2 = 1]� Pr[G3 = 1] 2 negl(�).
Game G4: is the same as G3 except we decode the subvectors s, s0 from the exponents

fprod1 and fprod01 corresponding to the subset {i : fi = 1}. Then we recompute the exponents
from the prime products at 0-positions and 1-positions and check if they coincide with fprod0,
fprod1, fprod00 and fprod01.
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G4

pp Setup(1�); ppn  Specialize(pp, n)

(C,f , y,⇤, y0,⇤0) A(pp)

fprod0  E0(G, g0); fprod1  E1(G, g1)

for i : fi = 1 do

pi  Hprime(i); si = (pi | fprod1); s0i = (pi | fprod01)

s = {si}fi=1; s
0 = {s0i}fi=1

fprod00  E 0
0(G, g0); fprod

0
1  E 0

1(G, g1)

b =
^

i=0,1

⇣
(W fprodi

i = Ci) ^ (W 0fprod0i
i = Ci) ^ (gfprodii = Fi) ^ (gi

fprod0i = F 0
i )
⌘

bcol = (fprod0 · fprod1 = fprod) ^
�
fprod00 · fprod

0
1 = fprod

�

brange = (fprod1 2 [L(y), R(y)]) ^
�
fprod01 2 [L(y0), R(y0)]

�

bsubv =

0

@fprod0 =
Y

fi=1,si=0

Hprime(i) ^ fprod00 =
Y

fi=1:s0i=0

Hprime(i)

1

A

b Ver(pp, C,⇤,f , y) = 1 ^ y 6= y0 ^ Ver(pp, C,⇤0,f , y0)

if bsubv = 0 _ b = 0 _ bcol = 0 _ brange = 0 then b 0

return b

where above ⇤ = (F0, F1,W0,W1,⇡0,⇡1,⇡2,⇡3), ⇤0 = (F 0
0, F

0
1,W

0
0,W

0
1,⇡

0
0,⇡

0
1,⇡

0
2,⇡

0
3),

ppn = (G, g, g0, g1,Hprime, Un).

Lemma 21. Assume that Hprime is collision-resistant, Pr[G3 = 1]� Pr[G4 = 1] 2 negl(�).

Proof. The output of G4 differs from G3’s only when bsubv = 0 ^ b = 1 ^ bcol = 1. By
assumption, for all i such that fi = 1, Hprime(i)’s are all distinct. Then by de�nition of s,

Y

fi=1,si=1

Hprime(i) | fprod1 and
Y

fi=1,si=0

Hprime(i) | fprod0. (7.1)

Multiplying both hand sides of the two equations, we obtain
Q

fi=1 Hprime(i) | fprod. Notice
that the equality holds, hence it also holds for the equations in (7.1).

Lemma 22. LetGgen be a hidden order group generator where the [59] SVC is position binding,
then Pr[G4 = 1] 2 negl(�).

Proof. We show that given any adversary (A, E), where E = (E0, E1, E 0
0, E 0

1), winning game
G4 with non-negligible advantage, we can construct B winning the position-binding game of
the [59] VC.
Indeed, B on input pp outputs (C, I1, s, (W0,W1), s0, (W 0

0,W
0
1)), where I1 = {i 2

[n] : fi = 1} and (W0,W1), (W 0
0,W

0
1) play the role of the (accepting) opening proofs for

the [59] SVC. The veri�er for position binding computes aj =
Q

fi=1,si=j Hprime(i); a0j =
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Q
fi=1,s0i=j Hprime(i) for j = 0, 1. Since bsubv = 1, aj = fprodj and a0j = fprod0j for j = 0, 1.

Next, since b = 1,W aj
j = Cj andW 0

j
a0j = Cj , for j = 0, 1.

Now since y 6= y0, brange = 1 and from lemma 19 we infer that fprod1 6= fprod01 (because
they have different number of factors) so s 6= s0. Combining these arguments, we obtain that
Ver(C, I1, s, , (W0,W1)) = 1, Ver(C, I1, s0, , (W 0

0,W
0
1)) = 1 (for the VC) and s 6= s0, i.e., B

succeeds in the position-binding game with the same probability of (A, E).

By combining all the lemmas we conclude that any PPT adversary has at most negligible
probability of breaking the function binding of our SVC scheme.

7.3.3 Instantiation

Instatiation of Hprime. As stated in Lemma 19, Hprime should be a collision-resistant function
with domain [n] that outputs prime numbers in the range

⇣
2(�), 2(�)+

(�)
n

⌘
. Here we specify

the function (·) and show instantiations for Hprime under these restrictions.
Hashing to primes is a well studied problem [115, 84, 55]. A standard technique is rejection

sampling: on input x it computes y = FK(x, 0), whereFK is a pseudorandom function with seed
K and range [A,B], and checks y for primality. If y is not prime it continues to y = FK(x, 1)
and so on, until it �nds a prime F (x, j) for some j. From the density of primes the expected
number of tries is log(B �A). As an alternative, FK can also be a random oracle.
Assume a collision-resistant hash function H that we model as a random oracle and its

outputs are in the range
⇣
2(�), 2(�)+

(�)
n

⌘
.52 For H to be collision resistant we require, due to

the birthday bound, its range to contain at least 22� prime numbers. From the density of primes
we know that in the above range there are about:

2+

n

+ 
n

� 2


⇡ 2+


n


� 2


=

2
⇣
2


n � 1

⌘



prime numbers, where for the �rst approximate equality we assumed that ⌧ n.
So if we set  (depending on � and n) to be the smallest positive integer such that:

2
⇣
2


n � 1

⌘


� 22�

then H gives suf�ciently many primes to instantiate Hprime (via the rejection sampling method
we described above).

For example for n = 260 and � = 128:  = 317. So instantiating Hprime with the rejection
sampling method based on the SHA512 (for FK) �xing its output range to (2317, 2317+317/260)
we get a suf�cient Hprime for our functional vector commitment construction that satis�es
lemma 19.

Instantiation of the Arguments of Knowledge. Here we present the merged argument of
knowledge for our Open algorithm of section 7.3.1. As noted, it was presented modularly in
order to ease the presentation of the protocol and its security proof, however we can merge

52We can securely �x the range of a hash function (as SHA512) by �xing some of its bits and truncating others.
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the proofs for the four languages L0 ��L3 into a single protocol, using standard composition
techniques. The uni�ed language of the Open algorithm is:

L =

8
>>>><

>>>>:

(F0, F1, F,W0,W1,R, L; fprod0, fprod1) :

W
fprod0
0 = C0 ^ g

fprod0
0 = F0^

^W fprod1
1 = C1 ^ g

fprod1
1 = F1^

^gfprod0·fprod1 = F ^ L < fprod1 < R

9
>>>>=

>>>>;

The description of the protocol is in Figure 7.3.
The protocol gets non-interactive after the Fiat-Shamir transform. We note that for ` an

instantiation of the random oracle with a hash-to-prime function of outputs in P(1, 22�) suf�ces.

Concrete Security Assumptions After the above instantiations we get that our overall binary
inner product commitment is secure in the GGM and RO model assuming that H (used for
Hprime as described above) is collision-resistant: the argument of knowledge of Figure 7.3 is
knowledge-extractable in the generic group model and gets non-interactive in the random oracle
model and the [59] SVC is position binding under the 2-strong RSA and Low order assumptions
(that are secure in the GGM).

7.3.4 Ef�ciency

Our FC for binary inner products has O(1) public parameters, O(1) commitment size and O(1)
openings proof size. More in detail, |ppn| consists of 4 |G|-elements and the descriptions of
G and Hprime (which are concise). |C| is 5 |G|-elements and 2 |Z22� |-elements. Finally the
opening proof |⇤| is 21 |G|-elements and 7 |Z22� |-elements.53
Generating the public parameters, via Setup and Specialize, takes a G-exponentiation of

size n = O�(n). The generation doesn’t require any private coins and thus is transparent.
The prover’s time (i.e., the running time of Open) is dominated by the computation of the

square decomposition x1, x2, x3, that is Pollack and Trevino algorithm [180] on input of size
2n running in time O

�
(2n)2/ log(2n)

�
. Therefore, our prover requires O�(�n2/ log(�n))

integer operations and O(n) group exponentiations.
The veri�er’s running time (i.e. Ver) is dominated by the computation ofF = g

Q
fi=1 Hprime(i),

which takes (in the worst case where f = (1, 1, . . . , 1)) aG-exponentiation of size n = O�(n).
The rest of the computations, i.e. the veri�cation of the argument of knowledge, take constant
time O(2�) = O�(1) G-exponentiations. However, below we make two observations that can
speed up the veri�cation in two useful ways.

Preprocessing-based veri�cation. Our Functional Commitment construction allows prepro-
cessing the veri�cation (see Remark 2). The veri�er can compute a-priori the function-dependent
value F so that the online veri�cation gets O�(n). Notably, this preprocessing is deterministic
and proof-independent, and thus can be reused to verify an unbounded number of openings for
the same function f .

From group-based to integers-based linear work. Even without preprocessing, the prover can
compute and send to the veri�er a PoE proof [215, 40] (see Section 7.6) for F = g

Q
fi=1 Hprime(i).

53We do not consider optimizations for the arguments of knowledge with which we could reduce the size of |C|
by 1 and |⇤| by 6 group elements respectively.
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Then the veri�er veri�es PoE instead of computing F herself. This takes O�(n) integer opera-
tions and O�(1) group exponentiations, in place of O�(n) group operations, which concretely
gives a signi�cant saving.

7.4 Our FC for Inner Products Over the Integers

In this section, we present two transformations that turn any functional commitment for binary
inner products (like the one we presented in Section 7.3) into a functional commitment for inner
products of vectors of (bounded) integers. Precisely, we build an FC where one commits to
vectors v 2 (Z2`)

n and the class of admissible functions is

Fn = {f : (Z2`)
n ! Z}

where each f is represented as a vector f 2 (Z2m)
n.

Consider an FC scheme bitFC for binary inner products, and let tCom(n), tOpen(n), tVer(n)
be the running times of its algorithms Com, Open and Ver respectively, and let s(n) be the size
of its openings.

Our two transformations yield FCs for the integer inner products functionalityF that achieve
different tradeoffs:

1. With our �rst transformation we obtain an FC where

t0Com(n) = tCom(n`), t
0
Open(n) = (`+m) · tOpen(n`), t

0
Ver(n) = (`+m) · tVer(n`),

s0(n) = (`+m) · (s(n`) + log(n`))

2. With our second transformation we obtain an FC where

t0Com(n) = tCom(n`2
`+m), t0Open(n) = tOpen(n`2

`+m), t0Ver(n) = tVer(n`2
`+m),

s0(n) = s(n`2`+m)

Given the tradeoffs, and considering instantiations of bitFC like ours, in which s(n) is a �xed
value in the security parameters, then the second transformation is particularly interesting in the
case `,m = O(1) are constant or O(log �) as it yields an FC with constant, or polynomial, time
overhead and constant-size openings.

7.4.1 Our lifting to FC for integer inner products with logarithmic-size openings

We start by providing here an intuitive description of our transformation. We give a formal
description of the FC scheme slightly below.

For our transformation, we use a binary representation of the vectors of integers v 2 (Z2`)
n

and f 2 (Z2m)
n, that is:

v = (v1, . . . , vn) 2 ({0, 1}`)n and f = (f1, . . . , fn) 2 ({0, 1}m)n
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Denote vi =
P`�1

j=0 v
(j)
i 2j and fi =

Pm�1
k=0 f (k)

i 2k the bit decomposition of vi, fi respectively.
Then we can rewrite the inner product of v and f as

y = hf ,vi =
nX

i=1

vifi =
nX

i=1

0

@
`�1X

j=0

m�1X

k=0

v(j)i f (k)
i 2j+k

1

A . (7.2)

If we swap the counters we conclude to:

y =
`�1X

j=0

m�1X

k=0

 
nX

i=1

v(j)i f (k)
i

!
2j+k =

`�1X

j=0

m�1X

k=0

hv(j),f (k)i2j+k

where above v(j) = (v(j)1 , . . . , v(j)n ) 2 {0, 1}n is a bit-vector of the j-th bits of all entries vi
(and similarly for f (k)). The inner product y of v and f is hereby broken into the above sum of
`m binary inner products. So, a �rst idea to open the inner product over the integers would be to
let one create ` commitments, one for each v(j) of length n, and then open to the inner product
y by revealing all the `m binary inner products, each with its corresponding opening proof. The
issue with this idea is that it yields an O(`m log n)-size opening.
Next, we show a more ef�cient way to use an FC for binary inner product that avoids this

quadratic blowup.
To this end, we show that y can also be represented as the sum of `+m binary inner products

between vectors of length n`. We start observing that we can rewrite (7.2) as

y =
nX

i=1

`�1X

j=0

v(j)i ·
 

m�1X

k=0

f (k)
i 2j+k

!
=

nX

i=1

`�1X

j=0

v(j)i · f̂ (j)
i (7.3)

where, for every i, j, each f̂ (j)
i is the integer

Pm�1
k=0 f (k)

i · 2j+k 2 [0, 2`+m�1]. Now the inner
product y over integers is reshaped as an inner product between an n`-long binary vector

v0 = v(0)k . . . kv(`�1)

and an n`-long function with coef�cients in [0, 2`+m�1]. It is left to appropriately grind this
inner product into binary inner products. We are about to show that those binary inner products
are between v0 and the following binary vectors

f 0
h = f (h)kf (h�1)k . . . kf (h�`+1)

where h 2 [0, `+m� 2],f (k) = (0, . . . , 0) for all k 62 [0,m� 1].
Indeed, let y0h = hv0,f 0

hi. Then by changing the variable k = h � j and rearranging the
summation of j, we can rewrite (7.2) as

y =
`+m�2X

h=0

`�1X

j=0

hv(j),f (h�j)i · 2h =
`+m�2X

h=0

hv0,f 0
hi · 2h =

`+m�2X

h=0

y0h · 2h.

Using as a building block the binary functional vector commitment we get a functional
vector commitment for bounded-integers as follows: only one commitment C is needed for the
concatenating vector v0. Then the opening proof consists of the partial outputs {yh}h2[0,`+m�2]
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together with their corresponding functional opening proofs {⇤h}h2[0,`+m�2], one for each
binary inner product hv0,f 0

hi. For veri�cation, one is checking that each ⇤h veri�es with
respect to C and f 0

h, to ensure that yh are the correct partial outputs. Then it reconstructs
y =

P`+m�2
h=0 yh2h according to the above equality.

FC scheme Consider bitFC as an arbitrary FC for binary inner products, we present below a
formal description of the transformation.

Setup(1�)! pp : runs pp = bitFC.Setup(1�). Returns pp

Specialize(pp,Fn)! ppFn
: given the description of the functions class Fn, which includes

the bounds `,m and the vector length n, the specialization algorithms setsN = n` and returns
ppFn

= bitFC.Specialize(pp, N).

Com(ppn,`,v)! C : Let v = (v1, . . . , vn) 2 ({0, 1}`)n be a vector of `-bit entries, and let
v(j) = (v(j)1 , . . . , v(j)n ) be the binary vector expressing the j-th bit of all entries in v, i.e., it
holds v =

⇣P`�1
j=0 v

(j)
1 2j , . . . ,

P`�1
j=0 v

(j)
n 2j

⌘
.

The commitment algorithm computes the commitment

C = bitFC.Com(ppFn
,v0), s.t. v0 = v(0)k . . . kv(`�1)

and returns C.

Open(ppFn
, C,v,f)! (y,⇤) : f = (f1, . . . , fn) 2 ({0, 1}m)n is a vector ofm-bit entries.

If f =
⇣Pm�1

k=0 f (k)
1 2k, . . . ,

Pm�1
k=0 f (k)

n 2k
⌘
then f (k) = (f (k)

1 , . . . , f (k)
n ) is the binary vector

of the k-th bit of all entries of f .

The opening algorithm proceeds as follows. For each h = 0, . . . , `+m� 2:

set f 0
h = f (h)kf (h�1)k . . . kf (h�`+1), where f (i) = (0, . . . , 0)8i 62 [0,m� 1],

and compute yh = hv0,f 0hi and ⇤h = bitFC.Open(ppFn
, C,v0,f 0

h),

Return ⇤ = {yh,⇤h}h2[0,`+m�2] .

Ver(ppFn
, C,⇤,f , y)! b : returns 1 iff:

1. bitFC.Ver
�
ppFn

, C,⇤h,f 0
h, yh

�
= 1, for each h 2 [0, `+m� 2].

2. y =
P`+m�2

h=0 yh2h.

Theorem 31. If the binary functional vector commitment is functional binding, then our bounded-
integer functional vector commitment is functional binding.

Proof. The proof is straightforward from the fact that two valid openings y, z over integer imply
immediately that there exists at least an index h for which there are two valid openings for
distinct binary inner products yh 6= zh.
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7.4.2 Our lifting to FC for integer inner products with constant-size openings

Here we provide a different method to lift an FC for binary inner products to an FC for integer
inner products that achieves a different tradeoff. The prover time and veri�cation time are 2`+m

times those of the bitFC scheme (with function inputs of bit-size n`2`+m), while openings are
exactly the same as those of bitFC (and thus constant-size using our scheme of Section 7.3).

Intuition In the transformation of the previous section we showed how how to express the inner
product y = hv,fi of n-long vectors of integers into the weighted sum of ` +m � 1 binary
inner products of vectors of length n`:

y =
`+m�2X

h=0

hv0,f 0
hi · 2h =

`+m�2X

h=0

yh · 2h

The drawback of this transformation is that we need to include all the yh in the opening, and
each of this integer is up to log n-bits long.

It turns out that we can iterate the same idea and encode the above weighted sum into a single
inner product hṽ, f̃i of binary vectors of length n`H withH =

P`+m�2
h=0 2h = 2`+m�1 � 1.

For every h 2 [0, ` +m � 2], de�ne the vector f̃h = f 0
hk · kf 0

h 2 {0, 1}n`2h , that is the
concatenation of 2h copies of f 0

h. Similarly, set ṽh = v0k · · · kv0 2 {0, 1}n`2h . Next, if we
de�ne

ṽ = ṽhk · · · kṽh 2 {0, 1}n`H and f̃ = f̃0k · · · kf̃`+m�2 (7.4)

it can be seen that

hṽ, f̃i =
`+m�2X

h=0

hṽh, f̃hi =
`+m�2X

h=0

hv0,f 0
hi · 2h = y

FC SchemeMore in detail the FC scheme works as follows.

Setup(1�)! pp : runs pp = bitFC.Setup(1�). Returns pp

Specialize(pp,Fn)! ppFn
: given the description of the functions class Fn, which includes

the bounds `,m and the vector length n, the specialization algorithms sets N = n`H , with
H = 2`+m�1 � 1, and returns ppFn

= bitFC.Specialize(pp, N).

Com(ppFn
,v)! C : Given v = (v1, . . . , vn) 2 ({0, 1}`)n, compute a vector ṽ 2 {0, 1}n`H

as in equation (7.4), and return the commitment

C = bitFC.Com(ppFn
, ṽ).

Open(ppFn
, C,v,f)! ⇤ : Given f = (f1, . . . , fn) 2 ({0, 1}m)n, compute vectors ṽ, f̃ 2

{0, 1}n`H as in equation (7.4), and return the opening

⇤ = bitFC.Open(ppFn
, ṽ, f̃).

Ver(ppFn
, C,⇤,f , y)! b : returns 1 iff bitFC.Ver(ppFn

, C,⇤, f̃ , y) = 1.

Theorem 32. If bitFC is functional binding, then the FC described above is functional binding.

The proof is straightforward based on the observation that two valid openings for distinct
y 6= y0 of our FC are also two valid proofs, for the same commitment and outputs, for the bitFC
scheme.

186



CHAPTER 7. INNER PRODUCT FUNCTIONAL COMMITMENTS FROM SET
ACCUMULATORS

7.5 Our FC for Inner Products mod p

In this section, we show how to extend the transformations of the previous section in order to
build FCs for inner products modulo an integer p, starting from an FC for binary inner products.
Namely we build FCs for

Fp,n = {f : (Zp)
n ! Zp}.

Solutions with logarithmic-size openings. For the FC of our �rst transformation of Section
7.4.1, the adaptation to support the inner product mod p is easy. The only change is to run
that construction by setting ` = m = kpk and by letting the second veri�cation check be:
y =

P`+m�2
h=0 yh · 2h mod p. Notice that the FC scheme has exactly the same complexity

analysis, considering ` = m = kpk.
More in general, given any FC for integer inner products it is possible to construct one

for inner products modulo an integer p, at the cost of additionally including log(np2) bits in
the opening: one simply adds to the opening the result y over the integers, and the veri�er
additionally checks that yp = y mod p.

Solutions with constant-size openings. To build an FC for Fp,n in which openings remain of
constant size, we discuss two solutions based on our second transformation of Section 7.4.2.
The �rst solution is described in Section 7.5.1. It shows how to use an FC for integer

inner products to obtain an FC for inner products modulo p, for p = poly, with no overhead
in the size of openings. This construction can be instantiated using the FCs obtained with
our second transformation of Section 7.4.2. To avoid a quadratic blowup in veri�cation time,
this construction can start from FC for integer inner products that enjoy preprocessing-based
veri�cation. This way, the veri�cation of the resulting FC remains O(n); as drawback, however
the resulting FC does not have preprocessing anymore.

FC for Z inner products, with
O(1) proofs and preprocessing

==)
FC for Zp inner products, with
O(1) proofs (no preprocessing)

The second solution consists into using the same transformation of Section 7.4.2 with
the following differences: set ` = m = kpk and, as a building block, use an FC for binary
inner products modulo p, i.e., for computing hv,fi (mod p) for v,f 2 {0, 1}n. If such a
building block is available and it has constant size proofs, it is easy to see that this variant of the
transformation is correct and secure. Clearly, due to the complexity of the transformation we
can only use it for small integers p = O(1), O(log �).

The only missing piece for this construction is showing this building block. In Section 7.5.2
we describe a construction of such a scheme, obtained by tweaking our scheme of section 7.3.
This solution preserves preprocessing veri�cation.

FC for Z2 inner products mod p,
with O(1) proofs

==)
FC for Zp inner products,
with O(1) proofs

7.5.1 Using FC for integer inner products with preprocessing

As explained above, given an FC for integer inner products intFC (like the ones of Section 7.4)
one can easily build one for inner products (mod p) by including in the opening proof the
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result y of the inner product over the integers, while the actual result is yp = y mod p. But y
(worst-case) can be n · p2. So the size of the proof gets at least kyk < 2 log(p) + log(n).

To remove the logarithmic dependence on n, we observe that having yp = y mod p (which
the veri�er always has as it is an input of the veri�cation algorithm) suf�ces for the veri�er
to check the opening. That is, since the euclidean division of y by p is y = k · p + yp then
0  k  np. Therefore the veri�er, after receiving yp, can brute-force try all the quotients
k 2 [0, np], set y(k) = k · p+ yp and check if the proof veri�es with respect to the integer y(k).
If there is no k 2 [0, np] such that the proof veri�es, it rejects, otherwise she �nds the actual y
which is accepting.

Naively, this approach would take time np · tVer(n), where tVer(n) is the veri�cation time
of intFC, when checking inner products of length n. The problem with this is that, for tVer(n) =
O�(n), the veri�cation becomes O�(n2). However, we notice that the veri�cation time of this
brute-force search can be kept linear if the scheme intFC one starts from has the preprocessing
property. The observation is that all thenp veri�cations are done with respect to the same function.
Thus one can �rst compute vkf using the preprocessing algorithm, in time O�(n) (O�(n log �)
for p = O(log �)), and then run the np veri�cations, each in �xed n-independent time O�(1).
Hence, using preprocessing we can achieve a veri�cation that is O�(pn), which is O�(n) (or
O�(n log �)) for small domains p = O(1) (or p = O(log �) resp.). As a drawback, one can
notice that this brute-force search inherently loses the possibility of achieving preprocessing
veri�cation.

We conclude observing that, by considering an instantiation of intFC obtain by applying the
transformation of Section 7.4.2 to the FC of Section 7.3 we obtain, for p = O(1) (p = O(log �)),
an FC for inner products (mod p) in which openings have �xed size O�(1) and veri�cation is
O�(n) (O�(n log �) resp.).

7.5.2 A variant of our FC for binary inner products mod p

In this section, we present another approach of our FC in 7.3 to treat binary inner products
mod p. That is, we let the prover computes g to the power of L(y), R(y) for the veri�er. The
add-ons to the opening proof is the g to the power of L(y), R(y) accompanied with an argument
of knowledge showing that the integer y encoded in these exponentiation is equivalent to yp
modulo p.

Intuition Here we explain the initial idea of our argument of knowledge. For simplicity, we
�rst consider p to be a power of 2, in particular, p = 2`. Then we can express y = q2` + yp
with some quotient q and residue yp. Recall from �g. 7.2 that L(y) = 2y and R(y) = 2(+


n )y.

Here we are ready to describe the hints.
The prover should send QL = g2

q , QR = g2
(+ 

n )q
and also QL,j = g2

q2j and QR,j =

g2
(+ 

n )q2j

for j = 1, . . . , ` to the veri�er.
She also uses a Proof of Square Exponent PoSE for each consecutive pair QL,j , QL,j+1, to

show that each pair is of the form gx, gx
2 for the known base g and some x. Similarly, she also

needs to prove this relation for each consecutive pair QR,j , QR,j+1

At the end, the veri�er checks the validity of the PoSE’s and also checks that Q2yp
L,` = gL(y)

and Q2(+

n )yp

R,` = gR(y).
However, the modulo p could be known before gL(y) and gR(y) are �xed. In order to turn

this idea into an argument of knowledge, we let the verifer send another prime modulo e as
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a challenge. Moreover, to treat generalized modulo p that are not powers of 2, we merge the
construction with a square-and-multiply algorithm.

PoKEEM. The proof of knowledge of exponent of exponent modulo p (PoKEEM) is for the
following relation

LPoKEEM =
�
(Y, a, p, xp;x) 2 G⇥ Z : Y = ga

x
, x = xp mod p

 

parametrized by a group G $Ggen(�) and a group element g $G. The protocol is in Fig-
ure 7.4.

Setup(�) : G $Ggen(�), g $G, set crs := (G, g).

V! P: Sends e $P(1, 2�)
Denote the binary representation ep = bs · · · b1 and ei = be/2s�ic;

P! V: Computes q = bx/ec, r = x mod ep and sets Qi = ga
eiq for each i 2 [1, s]

and Q0
i = ga

2eiq for each i 2 [1, s � 1]. For each i 2 [1, s � 1], computes ⇡(i)PoSE =

PoSE.P(crs, (Qi, Q0
i), a

eiq) and ⇡(i)PoDDH = PoDDH.P(crs, (Qi, Q0
i, Qi+1), (aeiq, a2eiq)) if

bi+1 = 1 or ⇡(i)PoDDH = (Qi+1 = Q0
i) if bi+1 = 0.

Sends ⇤ := (Q,Q0,⇡, r) for Q = (Q1, . . . , Qs),Q0 = (Q0
1, . . . , Qs�1),⇡ = (⇡(i)PoSE)

s�1
i=1

and ⇡0 = (⇡(i)PoDDH)
s�1
i=1 .

V(crs, Y, `,⇤): Outputs 1 iff r 2 [ep], xp = r mod p, Qs
ar = Y and all the proofs ⇡,⇡0

verify.

Figure 7.4: The succinct argument of knowledge of exponent (PoKEEM) protocol.

Theorem 33. The protocol PoKEEM is an argument of knowledge for the language LPoKEEM.

Proof. (Sketch) The proof starts from running the extractor for every proof ⇡(i)PoSE and ⇡
(i)
PoSE

in ⇡, pi0 to obtain a list of witnesses. These witnesses are the zi’s and z0i’s such that gzi = Qi

and gz0i = Q0
i. The subsequent argument is to show that these exponent values are consistent

(i.e. we should not extract two distinct values for some zi coming from different proofs). This
holds indeed, otherwise we �nd some low-order relation gc = 1 for c is the difference of the
two values. In particular, zs = epz1.
Now, simplifying the notation z = z1, we want to show that z is of the form ax for some

integer x. Rewinding the protocol for another challenge e0, we obtain another response r0 and
extracted value z0 such that Y = gz

epar = gz
e0par

0
. We argue that zepar = z0e

0par
0 , otherwise we

�nd a low-order relation. Nowwe represent z = dac and z0 = d0ac
0 such that d, d0 - a. Therefore,

we have depacep�c0e0p+r�r0 = d0e
0p.W.l.o.g we may assume that t = cep � c0e0p + r � r0 is

positive, and the relation depat = d0e
0p is over N. By some number-theoretical arguments

together with an observation that d, d0 are chosen before e, e0 are sampled and also (e, e0) = 1
with overwhelming probability, we derive that t = 0 and d = d0 = 1. In other words, z = ac

and Y = ga
cep+yp

.
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Our variantWe are ready to describe our FC for binary inner products mod p more precisely.
We only describe the differences with the scheme of Section 7.3.

In theOpen algorithm, the prover additionally includes the values gL(y), gR(y) in the opening
proof ⇤. She also plugs the PoKEEM proof, computed for a = 2 and a = 2(+


n ), in order to

prove that the exponents of exponents in gL(y) and gR(y) are congruent to yp, respectively.
In the Ver algorithm, in order to verify an output yp, the veri�er �rst runs the veri�cation of

Section 7.3 with the difference that it checks the range proof by using the values gL(y), gR(y) in-
cluded in⇤. Next, the veri�er checks the validity of the PoKEEM proof for elements gL(y), gR(y)

and exponent yp.

SecurityWe state the theorem below to ful�ll the security of our FC variant over Zp.

Theorem 34. If protocol PoKEEM is an argument of knowledge for LPoKEEM and our binary
functional vector commitment is functional binding, then our variant of binary functional vector
commitment over Zp is functional binding.

The proof directly comes from the extraction of an integer y congruent to yp modulo p from
gL(y), gR(y) and an observation that the existence two valid opening modulo p immediately
implies the existence of two opening over integer.

Ef�ciency This modi�cation adds up the opening size for binary inner products anO�(log p+�)
complexity. It also takes timeO�(log p+�)+ tVer(n) to verify, where tVer(n) is the veri�cation
time of intFC.

Considering an instantiation of intFC deriving from applying the transformation of Section
7.4.2 to the FC of Section 7.3 we then, for p = O(1), obtain an FC for inner products modulo p
in which openings are of size O�(1) and veri�cation is in time O�(1) with preprocessing.

7.6 Argument of Knowledge Protocols

Protocol PoE: To optimize our constructions’ veri�cation time we can utilize the PoE protocol,
introduced by Wesolowski [215] for exponents of the form 2T and generalized by [40] for
arbitrary exponents. That is a sound argument for the relation:

LPoE =
��

Y, u, x 2 G2 ⇥ Z;?
�
: Y = ux

 

Setup(�) : G $Ggen(�), g $G, set crs := (G, g).

V! P: Sends ` $P(1, 2�)
P! V: Computes q = bx/`c and sets Q = uq. Sends ⇡ := Q.

V(crs, Y, `,⇡): Computes r = x mod ` and outputs 1 iff Q`ur = Y .

Figure 7.5: The succinct sound argument (PoE).

PoE is a sound argument system under the adaptive root assumption for Ggen and it is not
knowledge sound, since there is no witness. The veri�er knows the exponent x. It is used for to
improve veri�cation: the veri�er performs an O(�) group exponentiation and O(kxk) integer
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operations, instead of an O(kxk) group exponentiation. Although asymptotically this is the
same, concretely it gives a signi�cant improvement, since integer operations are much more
ef�cient. Furthermore, its size is 1 group element independently of the size of x.

The proof of knowledge of exponent.

LPoKE =
�
(Y, u;x) 2 G2 ⇥ Z : Y = ux

 

Setup(�) : G $Ggen(�), g $G, set crs := (G, g).

P! V: Sends z = gx

V! P: Sends ` $P(1, 2�)
P! V: Computes q = bx/`c, r = x mod ` and sets Q = uq, Q0 = gq. Sends ⇡ :=
(Q,Q0, r).

V(crs, Y, `,⇡): Outputs 1 iff r 2 [`], Q`ur = Y and Q0`gr = z.

Figure 7.6: The succinct argument of knowledge of exponent (PoKE) protocol.

Remark 23. The above protocol is for arbitrary bases u, adversarially chosen. As noted in [40]
the protocol gets simpler in case the base is trusted, generated in the setup phase (i.e. u = g
and Y = gx). In particular, z shall not be sent (since it’s the statement, z = Y ) and the proof is
1 group element less.

The proof of Dif�e-Hellman tuple.

LPoDDH =
�
(Y0, Y1, Y ;x0, x1) 2 G3 ⇥ Z2 : gx0

0 = Y0 ^ gx1
1 = Y1 ^ gx0x1 = Y

 

Setup(�) : G $Ggen(�), g, g0, g1 $G, set crs := (G, g).

V! P: Sends ` $P(1, 2�)
P! V: Computes q = bx0x1/`c, q0 = bx0/`c, q1 = bx1/`c, r0 = x0 mod `, r1 = x1
mod ` and sets Q = gq, Q0 = gq00 , Q1 = gq11 . Sends ⇡ := (Q,Q0, Q1, r0, r1).

V(crs, Y, `,⇡): Computes r = r0r1 mod `. Outputs 1 iff Q`gr = Y and Q`
0g

r0 = Y0 and
Q`

1g
r1
1 = Y1.

Figure 7.7: The succinct argument of knowledge of Dif�e-Hellman tuple (PoDDH), under
different bases g, g0, g1.

The succinct proof of square exponent.

LPoSE =
n
(Zi;xi) 2 G⇥ Z : gx

2
i = Zi

o
.
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Setup(�) : G $Ggen(�), g $G, set crs := (G, g).

P! V: Sends zi = gxi

V! P: Sends ` $P(1, 2�)
P! V: Computes q = bxi/`c, r = xi mod ` and sets Q = zqi , Q

0 = gq. Sends ⇡ :=
(Q,Q0, r).

V(crs, Y, `,⇡): Outputs 1 iff r 2 [`], Q`zri = Zi and Q0`gr = zi.

Figure 7.8: The succinct argument of knowledge of square exponent (PoSE).

The succinct range proof protocol

LPoRE =
�
(Y, L,R;x) 2 G⇥ Z3 : L < x < R ^ gx = Y

 
.

192



CHAPTER 7. INNER PRODUCT FUNCTIONAL COMMITMENTS FROM SET
ACCUMULATORS

Setup(�) : G $Ggen(�), g, g0, g1 $G, set crs := (G, g, g0, g1).

P! V: Computes:

• F 0
1 = g

(fprod1�L)(R�fprod1)
1

• Run square decomposition algorithm in [180] to �nd x1, x2, x3 such that (fprod1 � L)(R�
fprod1) =

P3
i=1 x

2
i .

• For i = 1, 2, 3: Zxi = g
x2
i

1 , zxi = gxi
1

Sends (F 0
1, {Zxi , zxi}3i=1)

V! P: Sends ` $P(1, 2�)
P! V: Computes:

• For b = 0, 1: qb = bfprodb/`c, Qb = W qb
b , Q

0
b = gqbb , rb = fprodb mod `.

• q = bfprod0 · fprod1/`c, Q = gq, r = fprod0 · fprod1 mod `

• For i = 1, 2, 3: qxi = bxi/`c, Qxi = z
qxi
i , Q0

xi
= g

qxi
i , rxi mod `

• qL = b(fprod1 � L)/`c, QL = gqL1 , rL = (fprod1 � L) mod `

• qR = b(R� fprod1)/`c, QR = gqR1 , rR = (R� fprod1) mod `

• qLR = b(fprod1 �L) · (R� fprod1)/`c, QLR = gqLR
1 , rLR = (fprod1 �L) · (R� fprod1)

mod `

Sends ⇡ :=
�
{Qb, Q0

b, rb}1b=0, Q, {Qxi , Q
0
xi
, rxi}3i=1, QL, rL, QR, rR, QLR

�
.

V(crs, Y, `,⇡): Outputs 1 iff:

• r0, r1, rx1 , rx2 , rx3 , rL, rR 2 [`]

• Q0`
b g

rb
b = Fb, Q`

bW
rb
b = Cb, for b = 0, 1

• Q`gr = F

• Q0`
xi
g
rxi
1 = zi, Q`

xi
z
rxi
xi = Zxi , for i = 1, 2, 3

• Q`
Lg

rL
1 = F1 · g�L

1 , Q`
Rg

rR
1 = gR1 · F�1

1 , Q`
LRg

rLR
1 = F 0

1

• F 04
1 · g1 =

Q3
i=1 Zi

where r = r0r1 mod ` and rLR = rLrR mod `.

Figure 7.3: Our merged protocol for the Open algorithm of our binary inner product Functional
Commitment (section 7.3.1). The proof size and veri�cation time are independent of the size of
fprod and thus n.
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Setup(�) : G $Ggen(�), g, g0, g1 $G, set crs := (G, g).

P! V: Computes:

• Y 0 = g(x�L)(R�x)

• For i = 1, 2, 3: Zxi = g
x2
i

1 , zxi = gxi
1

Sends (Y 0, {Zxi , zxi}3i=1)

V! P: Sends ` $P(1, 2�)
P! V: Computes:

• q = bx/`c, Qb = gq, r = x mod `.
• For i = 1, 2, 3: qxi = bxi/`c, Qxi = z

qxi
i , Q0

xi
= g

qxi
i , rxi mod `

• qL = b(x� L)/`c, QL = gqL1 , rL = (x� L) mod `

• qR = b(R� x)/`c, QR = gqR1 , rR = (R� x) mod `

• qLR = b(x� L) · (R� x)/`c, QLR = gqLR
1 , rLR = (x� L) · (R� x) mod `

Sends ⇡ :=
�
Q, r, {Qxi , Q

0
xi
, rxi}3i=1, QL, rL, QR, rR, QLR

�
.

V(crs, Y, `,⇡): Outputs 1 iff:

• Q`gr = Y

• Q0`
xi
grxi = zi, Q`

xi
z
rxi
xi = Zxi , for i = 1, 2, 3

• Q`
Lg

rL = Y · g�L, Q`
Rg

rR = gR · Y �1, Q`
LRg

rLR = Y 0

• Y 04 · g =
Q3

i=1 Zi

where r = r0r1 mod ` and rLR = rLrR mod `.

Figure 7.9: The succinct Argument of Knowledge of range of an exponent.
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8
KEY-VALUE MAPS FROM ANY VECTOR COMMIT-
MENTS

The results of this chapter appear in a paper under the title "Cuckoo Commitments: Registration-
Based Encryption and Key-Value Map Commitments for Large Spaces" that will appear at the
ASIACRYPT 2023 conference [104].

8.1 Technical Contributions

In this chapter we present a construction that compiles any vector commitment into a key-value
map commitment (KVC) [40, 3] for arbitrary-size keys.

The core technique of our approach is a novel use of cuckoo hashing [169] in cryptography
that can be of independent interest. Cuckoo hashing is a powerful (probabilistic) technique to
store elements from a large universe X into a small table T so that one can later access them
in constant-time. Concretely, the latter means that for an element x the cuckoo hash returns
k = O(1) possible locations of T where to �nd x; the cuckoo hashing algorithms take care of
resolving collisions by reallocating elements in T whenever a collision occurs.
To put some context, we describe a simple version of Cuckoo Hashing with a stash [140].

For this, we have 2 hash functions h1, h2, a table T of size 4n and a (unordered) set S, called
the ‘stash’. To insert a new element x, one �rst computes x(1) = h1(x) and if T [x(1)] = empty
then stores x in T [x(1)]. Otherwise, if T [x(1)] = y then x ‘evicts’ y; namely, x is stored in
T [x(1)] and y is inserted in T [y(2)] (assume for this example that y was previously ‘sent’ to
T [x(1)] using h1). Subsequently, if T [y(2)] is occupied by z then y ‘evicts’ z, and z gets sent to
the location speci�ed by the alternative hash function. Observe that one always begin with h1
for a new element and when the element is evicted always uses the next hash function (and if the
last is reached, then the �rst one again). This procedure continues until either an empty position
is found orM attempts have been made. If the latter event occurs, then the last element that
was evicted gets stored in the stash S. It can be shown that for random hash functions h1, h2, if
M = O(� log n) then the size of the stash is in O(log n) with overwhelming probability [13].
There are many variants of the above mechanism: Cuckoo Hashing with k > 2 hash

functions [106] or having tables where every position/bucket has capacity ` > 1 [92]. We
refer to [216] for an insightful systematization of knowledge and [219] for an overview from a
cryptographic perspective.
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In our work, we formally de�ne a Cuckoo Hashing scheme in a cryptographic manner
in Section 8.2, closely following the de�nitions of [219]. For the rest, we mostly treat Cuckoo
Hashing as a black-box, assuming that it uses k hash functions with buckets of size ` = 1.
Finally, we informally describe how we can use our cuckoo hashing technique in the con-

text of vector commitments, speci�cally to transform any VC scheme into a key-value map
commitment for keys from a large space. Assuming one needs to commit to a key-value map
consisting of n key-value pairs (ki, vi) for i = 1 to n, one can “cuckoo hash” all the keys so as
to obtain a table T , a vector, that stores all the keys at certain positions. Then, one can compute
a vector commitment CT to T and another vector commitment CV to a vector V built in such a
way that V [j] stores a value v if the key k associated to v is stored in T [j]. Namely, each pair
(ki, vi) is stored in T and V at the same position j. By correctness of cuckoo hashing, for every
k such an index j exists. In order to open the commitment (CT , CV ) to a key k one can use
cuckoo hashing to �nd the set of h candidate indices (j1, . . . , jh) where k is (potentially) stored
and open CT at those positions, to �nd the index j⇤ such that T [j⇤] = k. One then also opens
CV to position j⇤ and its value v. The veri�er then would run similarly: for a key-value (k, v),
she runs the cuckoo hashing to �nd out (j1, . . . , jh) associated to k, verify the openings of CT

to (T [j1], . . . ,T [jh]), and the opening of CV to v in the position j⇤ such that T [j⇤] = k. For
security it is essential that all (j1, . . . , jh of (CT , CV ) are opened so that the fact that k is stored
in exactly one position can be veri�ed.
In Section 8.3 we give more details on other technicalities of this construction, such as

how to: deal with elements in the stash, prove that a key is not committed, reduce key-binding
to the position binding of the VC. Notably, this transformation is black-box, i.e., it works by
only invoking the algorithms of the underlying VC. This stands in contrast to, e.g., Verkle tree
approaches [67, 142].

8.2 Cuckoo Hashing Schemes

Cuckoo Hashing (CH) [169] is a technique to store a set ofm elements from a large universe
X into a linear-size data structure that allows ef�cient memory accesses. In our work we
abstract away the properties of a family of cuckoo hashing constructions that can be used in our
RBE and KVC constructions. We do this by de�ning the notion of Cuckoo Hashing schemes.
Our de�nition is a variant of the one recently offered by Yeo [219]; in our de�nition, we use
deterministic Insert algorithms.

In a nutshell, a cuckoo hashing scheme inserts n elements x1, . . . , xn 2 X in a vector T so
that each element xi can be found exactly once in T , or in a stash set S. The ef�cient memory
access comes from the fact that for a given x one can ef�ciently compute the k indices i1, . . . , ik
such that x 2 {T [i1], . . . ,T [ik]} [ S. The idea of cuckoo hashing constructions is to sample k
random hash functionsH1, . . . , Hk : X ! [n] and use them to allocate x in one of the k indices
H1(x), . . . , Hk(x). Each construction uses a speci�c algorithm to search the index allocated to
x, requiring to move existing elements whenever a position is going to be allocated to another
element. The most ef�cient algorithms are local search allocation [139] and random walks
[110, 107, 109, 212, 219].
We de�ne a Cuckoo Hashing scheme with the following algorithms:

De�nition 36 (Cuckoo Hashing Schemes Algorithms). A Cuckoo Hashing scheme CH =
(Setup, Insert, Lookup) consists of the following algorithms:
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• Setup(1�,X , n) ! (pp,T , S) : is a probabilistic algorithm that on input the security
parameter, the space of input values X and a bound n on the number of insertions, outputs
public parameters pp, k � 2, an empty vector T with N entries (with N a multiple of k),
along with an empty stash set S, (denoting s � 0 its size, at this point, s = 0);

• Insert(pp,T , S, x1, . . . , xm)! (T 0, S0) : is a deterministic algorithm that on input vectorT
where each non-empty component contains an element inX 2 pp, inserts each x1, . . . , xm 2
X in the vector exactly once and returns the updated vector with moved elements, T 0, S0.

• Lookup(pp, x)! (i1, . . . , ik) : is a deterministic algorithm that on input public parameters
pp and x 2 X , returns (i1, . . . , ik), the candidate indices where x could be stored.

Remark 24. Our Cuckoo Hashing schemes are, overall, probabilistic with the probability taken
over the choice of pp. Once pp is �xed, everything is deterministic; Insert and Lookup, that take
pp as input, are deterministic algorithms.

Our de�nition above differs from the one in [219] in the following aspects. First, we
consider dynamic cuckoo hashing schemes in which one can keep inserting elements, while
[219] considers the static case in which the set is hashed all at once. Second, in our notion each
entry of T can store a single element, whereas [219] considers the more general case where it
can store ` � 1 elements, which occurs in some constructions.

We de�ne correctness of cuckoo hashing by looking at the probability that either the insertion
algorithm fails or, if it does not fail, an inserted element is not stored in the appropriate indices
returned by Lookup. To model this notion we give two de�nitions. The �rst one is the “classical”
correctness de�nition of cuckoo hashing that takes this probability over any choice of inputs
but for a random and independent sampling of the hash functions. Intuitively this models the
scenario where an adversary for correctness does not have explicit access to the hash functions,
but can still choose any input set.

De�nition 37 (Correctness). A cuckoo hashing scheme CH is ✏-correct if for any n, any set of
m  n items x1, . . . , xm 2 X such that xi 6= xj for all i 6= j and any ` 2 [m]:

Pr

2

4
T 0 = ?
_ (T 0 6= ? ^

x` /2 {T 0[i1], . . . ,T 0[ik]} [ S0)
:

(pp,T , S) Setup(1�,X , n)
(T 0, S0) Insert(pp,T , S, x1, . . . , xm)

(i1, . . . , ik) Lookup(pp, x`)

3

5  ✏

and one simply says that CH is correct if it is ✏-correct with ✏ = negl(�).

8.2.1 Robust Cuckoo Hashing

The second de�nition (introduced by Yeo [219]) instead considers the case of inputs that are
chosen by a PPT adversary after having seen the hash functions. This models the scenario where
an adversary has explicit access to the hash functions before choosing the set of elements.

De�nition 38 (Robustness). A cuckoo hashing scheme CH is ✏-robust if for any n, any PPT
adversary A:

Pr

2

66664

T 0 = ?
_ (T 0 6= ? ^

x` /2 {T 0[i1], . . . ,T 0[ik]} [ S0)
:

(pp,T , S) Setup(1�,X , n)
{x1, . . . , xm, `} A(pp)

xi 6= xj8i 6= j 2 [m]
(T 0, S0) Insert(pp,T , S, x1, . . . , xm)

(i1, . . . , ik) Lookup(pp, x`)

3

77775
 ✏
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8.2.2 Ef�ciency parameters of cuckoo hashing

For our applications, the following parameters will dictate the ef�ciency of a cuckoo hashing
scheme: k, the number of possible indices (and of hash functions); N , the size of the table T ; s,
the size of the stash S; d, the number of changes in the table (i.e., number of evictions) after a
single insertion. While in most constructions, the parameters k and N are �xed at Setup time,
in some cuckoo hashing schemes the values of s and d may depend on the randomness and the
choice of inputs. As in the case of correctness vs. robustness, we de�ne s and d in the average
case (i.e., for any set of inputs and for random and independent execution of Setup) or in the
worst case (i..e, for adversarial choice of inputs after seeing pp).

8.2.3 Existing cuckoo hashing schemes

The following theorem encompasses a few existing cuckoo hashing schemes.

Theorem 35. For a security parameter � and an upper bound n, there exist the following cuckoo
hashing schemes:

• CH2 where k = 2,N = 2kn, that achieves negl(�)-correctness, and average case s = log n,
d = O(1) [140].

• CH(rob)
2 where k = 2, N = 2kn, that achieves negl(�)-robustness, and worst case s = n,

d = O(1) [140, 219] in the Random Oracle Model.

• CH(rob)
� where k = �, N = 2�n, that achieves negl(�)-robustness, and worst case s = 0,

d = � [219] in the Random Oracle Model.

8.3 Key-Value Map Commitments from Cuckoo Hashing and Vec-
tor Commitments

Given a key space K and a value space V , a key-value mapM ✓ K ⇥ V is a collection of
pairs (k, v) 2 K⇥ V . Key-value map commitments (KVC) [40, 3] are a cryptographic primitive
that allows one to commit to a key-value mapM in such a way that one can later open the
commitment at a speci�c key, i.e., prove that (k, v) is in the committed mapM, and do so in
a key-binding way. Namely, it is not possible to open the commitment at two distinct values
v 6= v0 for the same key k. KVCs are a generalization of vector commitments [66]: while in
VCs the key space is the set of integers {1, . . . , n}, in a KVC the key space is usually a set of
exponential size.
In this section, we present a construction of KVCs based on a combination of vector com-

mitments and cuckoo hashing. The resulting KVC needs to �x at setup time a bound on the
cardinality of the key-value map, but otherwise supports a key space and a value space of
arbitrary sizes.

8.3.1 KVM Construction from Cuckoo Hashing and Vector Commitments

We present a construction of a KVC for keys of arbitrary size. Our scheme is obtained by
combining a Cuckoo Hashing scheme CH and a Vector Vommitment one VC. We refer to
Section 8.1 for an intuitive description.
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• Setup(1�, n,K,V) ! crs: runs (ppCH, T̂ , Ŝ)  CH.Setup(1�, n), and generates crsVC  
VC.Setup(1�, N), then returns crs (crsVC, ppCH).

• Com(crs,M)! (C, aux): on input a key-value mapM = {(ki, vi)}mi=1:

1. if there exists i, j 2 [m], i 6= j such that ki = kj , it aborts;
2. (T , S) CH.Insert(ppCH, T̂ , Ŝ, k1, . . . , km); ifT = ? it aborts, else setsT 0  cat(T );
3. (CT , auxT ) VC.Com(crsVC,T 0);
4. For j = 1 tom, let indj 2 [N ] be the index such that T 0[indj ] = kj . If indj exists, it sets

V [indj ] vj , otherwise, if kj 2 S, adds (kj , vj) to S⇤.
5. (CV , auxV ) VC.Com(crsVC,V )

It return C = (CT , CV , S⇤) and aux = (auxT , auxV , S⇤,T 0, S,M).

• Open(crs, aux, k)! ⇤:

1. (ind1, . . . , indk) CH.Lookup(ppCH, k);
2. if k /2 {T [ind1], . . . ,T [indk]} [ S aborts;
3. for j = 1 to k: ⇤j  VC.Open(crsCH, auxT , indj).
4. Let ind⇤ 2 [N ] be the index such that T [ind⇤] = k. If ind⇤ exists, it computes ⇤⇤  

VC.Open(crsCH, auxV , ind⇤), else sets ⇤⇤ = ?.

Return ⇤ = (⇤1,T [ind1], . . . ,⇤k,T [indk],⇤⇤).

• Ver(crs, C,⇤, (k, v)) ! b: parses C = (CT , CV , S⇤) and ⇤ = (⇤1, t1, . . . ,⇤k, tk,⇤⇤) and
proceeds as follows:

1. (ind1, . . . , indk) CH.Lookup(ppCH, k);
2. for j = 1 to k: bj  VC.Ver(crsCH, CT ,⇤j , indj , tj); if

Vk
j=1 bj = 0 outputs 0, else

continues;
3. if k /2 {t1, . . . , tk}, outputs 1 if and S⇤ is valid (i.e., it does not contain any repeated key
and no entry (k, ✏) and (k, v) 2 S⇤, else outputs 0.

4. Otherwise, let j⇤ be the �rst index such that k = tj⇤ : it computes b⇤  VC.Ver(crsCH,
CV , ⇤⇤, indj⇤ , v), and returns b⇤.

Correctness and succinctness One can see by inspection that the proposed KVC scheme is
robust (with overwhelming probability) under the assumption that VC is perfectly correct and
that the cuckoo hashing scheme CH is robust. Succinctness of our KVC scheme is also easy to
see by inspection, under the assumption that VC is succinct and that we use an instantiation of
CH that satis�es k = O(log n).

Theorem 36 (Key binding). If VC is position binding, then KVM is a key-binding KVC.

Proof. Assume by contradiction that there exists a PPT adversary A that breaks the position
binding of our KVC scheme. Then we show how to build a reduction B that breaks the position
binding of VC. B takes as input crsVC, generates the CH public parameters and runs A on input
crs (crsVC, ppCH).
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Assume that A returns a tuple (C, k, v,⇤, ṽ, ⇤̃) that breaks key binding with non-negligible
probability. Let

⇤ = (⇤1, t1, . . . ,⇤k, tk,⇤
⇤), ⇤̃ = (⇤̃1, t̃1, . . . , ⇤̃k, t̃k, ⇤̃

⇤)

By the winning condition of key binding we have that v 6= ṽ and that both opening proofs are
accepted by the Ver algorithm. In particular, since Ver is invoked on the same key k, the �rst
step of veri�cation computes the same indices ind1, . . . , indk in the veri�cation of both ⇤ and ⇤̃.

First, notice that it must be the case that 8j 2 [k], tj = t̃j . Otherwise, one can immediately
break the VC position binding with the tuple (CT , indj ,⇤j , tj , ⇤̃j , t̃j).
Second, if k /2 {t1, . . . , tk} then by construction of Ver (step 3), A cannot break position

binding.
Finally, let j⇤ be the index such that k = tj⇤ . Then one can break the VC position binding

with the tuple (CV , indj⇤ ,⇤⇤, v, ⇤̃⇤, ṽ).

In Section 8.4.2 we show that this KVC is updatable.

8.3.2 Key-Value Map Instantiations

We can instantiate the generic construction of the previous section with the CH scheme CH�
from Theorem 35 (which is robust in the random oracle model) and any of the existing vector
commitment schemes. If the VC has constant-size openings, say O(�), then the resulting KVC
constructions have openings of size O(�2). The most interesting implication of this KVC
instantiation is that we obtain the �rst KVCs for unbounded key space based on pairings in a
black-box manner. More in detail, we can obtain a variety of updatable KVCs according to
which updatable VC we start from, e.g., we can use [66] to obtain a KVC based on CDH, [150]
for one based on q-DHE. Prior to this work, an updatable KVC under these assumptions could
only be obtained by instantiating the Merkle tree scheme with one of [150, 66] VCs. However,
Merkle trees with algebraic VCs need to make a non-black-box use of the underlying groups in
order to map commitments back to the message space. In contrast, all our KVCs are black-box,
if so are the underlying VC (as it is the case for virtually all existing schemes).

8.3.3 Accumulators from Vector Commitments with Cuckoo Hashing

It is easy to see that a KVC for a key space K immediately implies a universal accumulator
[18, 147] for universe K. The idea is simple: to accumulate k1, . . . , kn one commits to the
key-value map {(k1, 1), . . . , (kn, 1)}; a membership proof for k is an opening to (k, 1), and
a non-membership proof is a KVC opening to (k, ✏). The security of this construction (i.e.,
undeniability [152] – the hardness of �nding a membership and a non-membership proof for
the same element) follows straightforwardly from key binding. Furthermore, if the KVC is
updatable, the accumulator is updatable (aka dynamic, in accumulators lingo).

From this, we obtain new accumulators for large universe enjoying properties not known in
prior work. For instance, we obtain the �rst dynamic accumulators for a large universe that are
based on pairings in a black-box manner. To the best of our knowledge, prior black-box pairing-
based accumulators either support a small universe [56, 66], or are not dynamic [167, 137].
Notably, using the CDH-based VC of [66] we obtain the �rst universal accumulator for a large
universe that is dynamic, based on the CDH problem over bilinear groups, and black-box.
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8.4 Updatable Key-Value Map Commitments

8.4.1 De�nitions

We de�ne updatable key-value map commitments as an extension of KVCs in which, akin to
updatable VCs, one can ef�ciently update the commitment and the openings with respect to
changes in the committed key-value map.

We model an update in a key-value mapM as a pair (k, �) where k 2 K is a key and � is an
update information which can be:

• � = (insert, v) to denote the insertion of the pair (k, v), i.e.,M0  M [ (k, v);

• � = (delete, v) to denote the deletion of the pair (k, v), i.e.,M0  M\ (k, v);
• � = (update, v, v0) to denote the change of value from v to v0 associated to the key k, i.e.,
M0  (M\ (k, v)) [ (k, v0).

Also, we say that (k, �) is valid forM if the operation is well de�ned, namely: it inserts a key
that is not present in the map, it deletes or changes the value of an already existing key.

De�nition 39 (Updatable KVC). A key-value map has updatable commitments if there exist
two additional algorithms ComUpdate and ProofUpdate that work as follows.

• ComUpdate(crs, C, (k, �), aux) ! (C 0, aux0,⇡�): Given a commitment C, key k, update
information � and an auxiliary information aux, the algorithm outputs a new commitment C 0,
auxiliary information aux0, and update hint ⇡�.

• ProofUpdate(crs,⇤k, (k̂, �),⇡�)! ⇤0
k): Given an opening ⇤k for some key k 2 K, a key k̂

(possibly different from k), update information � associated to k̂, and an update hint ⇡�, the
algorithm outputs a new opening ⇤0

k.

Robust Correctness of Updatable KVCs. An updatableKVM is robust if for any public param-
eters crs $ Setup(1�, n,K,V), any adversarial choice of a key-value mapM ✓ K⇥ V of size
 n, v 2 (V [ {✏}), (k, v0) 2 K⇥ (V [ {✏}), and sequence of valid updates {(k̂j , �j)}j2[m] that
eventually yields aM0 of size n such that (k, v0) 2M0, any initial commitment (C0, aux0) 
Com(crs,M) and opening ⇤(0)

k  Open(crs, aux0, k), and, sequentially, for j 2 [m], updated
commitments and openings (Cj , auxj ,⇡�j)  ComUpdate(crs, Cj�1, (k̂j , �j), auxj�1) and
⇤(j)
k  ProofUpdate(crs,⇤(j�1)

k , (k̂j , �j),⇡�j), we have that Ver(crs, Cm,⇤(m)
k , (k, v0)) = 1

holds with overwhelming probability in �.
Ef�ciency of Updatable KVCs. An updatable KVC is said ef�cient if:

(i) The ef�ciency de�nition of De�nition 17 holds also for commitments and openings produced
by ComUpdate and ProofUpdate respectively. Additionally, the update hints ⇡� produced
by ComUpdate should also have polylogarithmic size.

(ii) The runtimes of ComUpdate and ProofUpdate are polylogarithmic in n.

Our updateability notion for KVCs corresponds to what is known as stateful updates in
the VC literature. This is due to the fact that ComUpdate requires knowledge of the auxiliary
information aux related to the commitment C (which possibly contains the committed vector),
and produces an update hint ⇡� that can be used by anyone to update local proofs. This model is
useful in applications where a central party can perform an update and enables everyone else to
update proofs by publishing succinct information.
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8.4.2 An Updatable Key-Value Map Construction from Cuckoo Hashing and
Vector Commitments

Here we show that the scheme described above is also updatable, de�ning the following algo-
rithms:

• ComUpdate(crs, C, (k, �), aux) ! (C 0, aux0,⇡�): this algorithm initializes the following
vectors: T̂ 0  T̂ , V̂ 0  V̂ , and computes:

1. (ind1, . . . , indk) CH.Lookup(ppCH, k).
2. if �[1] 2 {delete, update}, then:

(a) if looks for ind 2 {ind1, . . . , indk} such that T̂ [ind] = k. If there are several, it aborts,
if there is none, then it looks for an element in Ŝ with �rst component k: if there are
several or none it aborts; if there is one such element but its second component is not
v = �[2], then it also aborts;

(b) if �[1] = delete, it removes the value in T̂ 0[ind] if ind existed, and else it removes (k, v)
from Ŝ;

(c) else if �[1] = update, it sets V̂ 0[ind] v0 (where v0 = �[3]) if ind existed, and else it
removes (k, v) from S⇤ and adds (k, v0) in S⇤;

3. if �[1] = insert, then:

(a) (T , S)  CH.Insert(ppCH, T̂ , Ŝ, k). If T =?, it aborts. Else it updates T̂ 0  
cat(T );

(b) it �nds ind 2 {ind1, . . . , indk} such that T̂ 0[ind] = k. If there are several, it aborts, if
there is none, if looks for k in S; if k /2 S, then it aborts;

(c) if ind existed, it sets V̂ 0[ind] v (where v = �[2]), else it adds (k, v) to S⇤.
4. ⇡T is initialized as ;. For each index i such that T̂ 0[i] 6= T̂ [i], it sequentially updates

(CT , auxT ) VC.ComUpdate(crsVC, CT , i, T̂ [i], T̂ 0[i]), and adds (i, T̂ [i], T̂ 0[i]) to ⇡T .
5. it initializes ⇡V  ;. For each index i such that V̂ 0[i] 6= V̂ [i], it sequentially updates

(CV , auxV )  VC.ComUpdate(crsVC, CV , i, V̂ [i], V̂ 0[i]), and adds (i, V̂ [i], V̂ 0[i]) to
⇡V .

6. �nally it returns: C 0  (CT , CV , S⇤), aux0  (auxT , auxV , S⇤, T̂ , S,M), and ⇡�  
(⇡T ,⇡V , T̂ [ind1], . . . , T̂ [indk], Ŝ).

• ProofUpdate(crs,⇤k = (⇤1, t1, . . . ,⇤k, tk,⇤⇤), (k̂, �),⇡� = (⇡T ,⇡V , t01, . . . , t
0
k, S)) !

⇤0
k: this algorithm computes:

1. (ind1, . . . , indk) CH.Lookup(ppCH, k̂).
2. if k̂ /2 {t01, . . . , t0k} [ S, then it aborts;
3. for each j 2 [k], for each (i, t, t0) 2 ⇡T , it updates: ⇤j  VC.ProofUpdate(crsVC,⇤j , i, t, t0);

4. it looks for i⇤ 2 [k] such that t0i⇤ = k̂. If there are several such indices, it aborts. Else if i⇤
does not exist, it updates ⇤⇤  ?. Else if i⇤ exists and is unique, for each (i, v, v0) 2 ⇡V ,
it sequentially updates ⇤⇤  VC.ProofUpdate(crsVC,⇤⇤, i, v, v0).

5. �nally it returns ⇤0
k = (⇤1, t01, . . . ,⇤k, t0k,⇤

⇤).
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One can remark that in the ProofUpdate algorithm, if the input k̂ is equal to the k of the
input ⇤k, then t01, . . . , t0k will not be required in � as they will be equal to the t1, . . . , tk in ⇤k.

Robust Correctness.We show robust correctness of the above updatable KVC,KVM = (Setup,
Com, Open, Ver, ComUpdate, ProofUpdate), built from the Cuckoo Hashing scheme CH and
the Vector Commitment scheme VC, if CH is robust and VC is correct.
Let n be an integer, � a security parameter, K a key space and V a value space which are

subspaces of the input space of VC’s vectors, and: crs Setup(1�, n,K,V). Let A be a PPT
adversary, who chooses a key-value mapM ⇢ K ⇥ V of size n or less, (k, v) 2 K ⇥ V [ {✏},
v0 2 V ⇥ {✏}, and a sequence of valid updates {(k̂j , �j)}j2[m] that eventually yields the udpated
key-value mapM0 of size n or less such that (k, v0) 2M0.

Let (C0, aux0) Com(crs,M),⇤(0)
k  Open(crs, aux, k), (Cj , auxj ,⇡�j) ComUpdate(crs, Cj�1,

(k̂j , �j), auxj�1) and ⇤
(j)
k  ProofUpdate(crs,⇤(j�1)

k , (k̂j , �j),⇡�j).
We write this demonstration by induction. If there are no updates (m = 0), thenM0 = M,

and since we required uniqueness of the keys in our key-value map construction, v0 = v is the
value associated to k and Ver(crs, C0,⇤

(0)
k , (k, v)) = 1 from the correctness of VC. Now, for the

end of the induction, let us suppose that for some i 2 [0;m� 1], and for (k, vi) the key-value
pair of k in theM after update i, Ver(crs, Ci,⇤

(i)
k , (k, vi)) = 1.

Let (k, vi+1) be the key-value pair for k in the map after update i + 1. Then, the update
hint ⇡�i+1, returned by ComUpdate under the robustness of CH, provides the changes from
the key-value map after the i-th update,Mi, to the one after the (i+ 1)-th update (k̂i+1, �i+1),
Mi+1. Running on this ⇡�i+1 with the same (k̂i+1, �i+1), ProofUpdate will also make ⇤i+1

an opening for the mapMi+1 in k. As (k, vi+1) is the key-value pair for k after the (i+ 1)-th
update, Ver(crs, Ci+1,⇤

(i+1)
k , (k, vi+1)) will thus be equal to 1 from the correctness of VC.

Ef�ciency.We show that if VC and CH are ef�cient, and CH is robust, thenKVM also is. Indeed,
if they are, then crs is of polylogarithmic size, as well as commitments and openings under the
ef�ciency of the VC. The auxiliary information input to ComUpdate is of polylogarithmic size,
and the key and update information of constant size. Under the ef�ciency of CH, the output ⇡�
is polylogarithmic except with probability negligible in �, as its size is at most in the number of
elements moved by a CH.Insert operation, and in the stash size, which is also polylogarithmic
if CH is robust. Under the ef�ciency of VC ComUpdate and ProofUpdate then both run in
polylogarithmic time.
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9
CONCLUSION AND FUTURE WORK

In the second part of the thesis (Part II) we studied zero-knowledge protocols for the set mem-
bership problem. We provided succinct zero-knowledge proofs of set membership and non-
membership for singletons using the RSA accumulator as the underlying set commitment. We
also provided succinct zero-knowledge proofs of set membership of singletons using a position-
hiding variant of EDRAX Vector Commitment as the underlying set commitment. Then we
proceeded to succinct batch set membership proofs for multiple elements, again using the RSA
accumulator.

There are various interesting research avenues open in this direction. One of the most inter-
esting open problems would be to extend our methodology of batch set membership proofs for
RSA accumulators to succinct batch zero-knowledge set non-membership proofs, i.e. provding
that multiple (committed) elements are not members of the set but preserving the small size of
the proof. Another possible future work is to construct batch proofs where the zero-knowledge
property is perfect (or statistical) instead of computational. In our batch set-membership protocol
zero-knowledge holds under a computational assumption (DDH-II) over groups of unknown
order. Achieving perfect zero-knowledge would lead to everlasting privacy for the elements we
prove membership for. This would translate to privacy even against quantum computers.
On a more general view, another possible research avenue would be to investigate post-

quantum zero-knowledge poofs of set membership. With recent advances in succinct lattice-
based commitments and zero-knowledge proofs this direction seems more tangible in the lattice
cryptographic setting.

The most important conclusion is that specialized SNARKs for speci�c relations can be far
more bene�cial than applying general purpose SNARKs. In our case we started from a relation
(the one of RSA Accumulators) that was in practice infeasible to prove via general purpose
constructions. However, it turned out that special algebraic techniques relevant to the speci�c
idiosyncracy of the problem can make a zero-knowledge proof feasible.
This conclusion can be generalized. A great research effort has been put to construct and

improve SNARKs for all (NP) languages. Our thesis indicates that it is reasonable to dedicate
efforts for special-type systems for speci�c languages. This conclusion could be strengthened
by the fact that in real-world applications the types of languages that SNARKs are used for are
essentially not many or at least are not very diverse.

Therefore, identifying interesting relations, their underlying properties and study the devel-
opment of specialized SNARKs for these relations can be another fruitful research avenue.
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In the third part of the thesis (Part III) we switch to vector commitments. Firsty, we intro-
duced the notion of Incremental Aggregation for vector commitments and provide two ef�cient
constructions from groups of unknown order. We show concrete applications of incrementally
aggregatable vector commitments to space-time ef�cient precomputation of proofs of opening
and Veri�able Decentralized Storage. Then we turned to functional commitments, presenting
constructions of functional commitment with constant-sized public parameters and opening
proofs for linear functions. The constructions are in the groups of unknown order setting. At
the end we showed a generic way to transform any vector commitment to a key-value map
commitment using a well-known probabilistic data structure, Cuckoo-Hashing.
Again, one can think of many fascinating open problems for future work. An intriguing

and challenging open problem is to construct incrementally aggregatable vector commitments
from other cryptographic settings such as bilinear groups or lattices. This is probably the most
challenging open problem left in the thesis. It would be surpising if a black-box algebraic
construction from bilinear groups exists that supports fully-�edged incremental aggregation.
However, it would be interesting to understand what is the closest weaker notion of incremental
aggregation that is feasible in this setting. On the other hand, a construction over lattices may be
more tangible.
In case a construction of incrementally aggregatable vector commitments from other–than

groups of unknown order–settings is not found it would make sense to formally understand what
is the structure of groups of unknown order that makes it feasible in comparison to the other
settings.

On the functional commitments’ side there are many relevant open questions standing such
as "Can we achieve inner product functional commitments with constant parameters from other
settings?". Or "Is there a non-trivial way to generalize the result to a richer (than linear) class
of functions", where the "trivial" way for higher degree polynomials would be to just linearize
them.

Functional commitments is a very active research area and many constructions with rich func-
tionalities have appeared, mostly from other settings, lattices or bilinear groups. An outstanding
question is why in other settings the constructions require linear–in the size of the vector–public
parameters or super-constant proofs (unless not fully succinct or using non black-box general
purpose proof systems) and, again, what is the structural property of groups of unknown order
that allows for constant-sized public parameters.
A slightly different direction would be to investigate ’direct’ construction of functional

commitments over groups of unknown order. By ’direct’ we mean constructions that make only
black-box use of group operations and do not arithmetize the underying function. Surpisingly,
such constructions exist in bilinear groups and lattices but remain hard to build in the setting of
groups of unknown order. This is a very challenging problem in the area that remains open for a
long time.

Finally, for key-value map commitments it remains an open problem to explore if one could
use the same approach of vector commitments and cuckoo-hashing but avoiding the linear–in the
security parameter–overhead in the opening proof size. More generally, since cuckoo-hashing is
underexplored in public-key cryptography it’s fascinating to investigate if it could have further
applications on that domain.
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